210 resultados para Countermeasures
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. One tool used to combat red light running is automated enforcement in the form of RLR cameras. Automated enforcement, while effective, is often controversial. Cedar Rapids, Iowa installed RLR and speeding cameras at seven intersections across the city. The intersections were chosen based on crash rates and whether cameras could feasibly be placed at the intersection approaches. The cameras were placed starting in February 2010 with the last one becoming operational in December 2010. An analysis of the effect of the cameras on safety at these intersections was determined prudent in helping to justify the installation and effectiveness of the cameras. The objective of this research was to assess the safety effectiveness of the RLR program that has been implemented in Cedar Rapids. This was accomplished by analyzing data to determine changes in the following metrics: Reductions in red light violation rates based on overall changes, time of day changes, and changes by lane Effectiveness of the cameras over time Time in which those running the red light enter the intersection Changes in the average headway between vehicles entering the intersection
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. One tool used to combat red light running is automated enforcement in the form of RLR cameras. Automated enforcement, while effective, is often controversial. Cedar Rapids, Iowa installed RLR and speeding cameras at seven intersections across the city. The intersections were chosen based on crash rates and whether cameras could feasibly be placed at the intersection approaches. The cameras were placed starting in February 2010 with the last one becoming operational in December 2010. An analysis of the effect of the cameras on safety at these intersections was determined prudent in helping to justify the installation and effectiveness of the cameras. The objective of this research was to assess the safety effectiveness of the RLR program that has been implemented in Cedar Rapids. This was accomplished by analyzing data to determine changes in the following metrics: Reductions in red light violation rates based on overall changes, time of day changes, and changes by lane Effectiveness of the cameras over time Time in which those running the red light enter the intersection Changes in the average headway between vehicles entering the intersection
Resumo:
Red light running (RLR) is a problem in the US that has resulted in 165,000 injuries and 907 fatalities annually. In Iowa, RLR-related crashes make up 24.5 percent of all crashes and account for 31.7 percent of fatal and major injury crashes at signalized intersections. RLR crashes are a safety concern due to the increased likelihood of injury compared to other types of crashes. The research team developed this toolbox for practitioners to address RLR crashes. The Four Es—Engineering, Enforcement, Education, and Emergency Response—should be used together to address RLR problems. However, this toolbox focuses on engineering, enforcement, and education solutions. The toolbox has two major parts: Guidelines to identify problem intersections and the causes of RLR at intersections Roadway-based and enforcement countermeasures for RLR
Resumo:
The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages.
Resumo:
Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions.
Resumo:
The Federal Highway Administration (FHWA) estimates that 58 percent of roadway fatalities are lane departures, while 40 percent of fatalities are single-vehicle run-off-road (SVROR) crashes. Addressing lane-departure crashes is therefore a priority for national, state, and local roadway agencies. Horizontal curves are of particular interest because they have been correlated with increased crash occurrence. This toolbox was developed to assist agencies address crashes at rural curves. The main objective of this toolbox is to summarize the effectiveness of various known curve countermeasures. While education, enforcement, and policy countermeasures should also be considered, they were not included given the toolbox focuses on roadway-based countermeasures. Furthermore, the toolbox is geared toward rural two-lane curves. The research team identified countermeasures based on their own research, through a survey of the literature, and through discussions with other professionals. Coverage of curve countermeasures in this toolbox is not necessarily comprehensive. For each countermeasure covered, this toolbox includes the following information: description, application, effectiveness, advantages, and disadvantages.
Resumo:
Lane departure crashes are the single largest category of fatal and major injury crashes in Iowa. The Iowa Department of Transportation (DOT) estimates that 60 percent of roadway-related fatal crashes are lane departures and that 39 percent of Iowa’s fatal crashes are single-vehicle run-off-road (SVROR) crashes. Addressing roadway departure was identified as one of the top eight program strategies for the Iowa DOT in their Comprehensive Highway Safety Plan (CHSP). The goal is to reduce lane departure crashes and their consequences through lane departure-related design standards and policies including paved shoulders, centerline and shoulder rumble strips, pavement markings, signs, and median barriers. Lane-Departure Safety Countermeasures: Strategic Action Plan for the Iowa Department of Transportation outlines roadway countermeasures that can be used to address lane departure crashes. This guidance report was prepared by the Institute for Transportation (InTrans) at Iowa State University for the Iowa DOT. The content reflects input from and multiple reviews by both a technical advisory committee and other knowledgeable individuals with the Iowa DOT.
Resumo:
This project analyzes the characteristics and spatial distributions of motor vehicle crash types in order to evaluate the degree and scale of their spatial clustering. Crashes occur as the result of a variety of vehicle, roadway, and human factors and thus vary in their clustering behavior. Clustering can occur at a variety of scales, from the intersection level, to the corridor level, to the area level. Conversely, other crash types are less linked to geographic factors and are more spatially “random.” The degree and scale of clustering have implications for the use of strategies to promote transportation safety. In this project, Iowa's crash database, geographic information systems, and recent advances in spatial statistics methodologies and software tools were used to analyze the degree and spatial scale of clustering for several crash types within the counties of the Iowa Northland Regional Council of Governments. A statistical measure called the K function was used to analyze the clustering behavior of crashes. Several methodological issues, related to the application of this spatial statistical technique in the context of motor vehicle crashes on a road network, were identified and addressed. These methods facilitated the identification of crash clusters at appropriate scales of analysis for each crash type. This clustering information is useful for improving transportation safety through focused countermeasures directly linked to crash causes and the spatial extent of identified problem locations, as well as through the identification of less location-based crash types better suited to non-spatial countermeasures. The results of the K function analysis point to the usefulness of the procedure in identifying the degree and scale at which crashes cluster, or do not cluster, relative to each other. Moreover, for many individual crash types, different patterns and processes and potentially different countermeasures appeared at different scales of analysis. This finding highlights the importance of scale considerations in problem identification and countermeasure formulation.
Resumo:
Vehicular networks ensure that the information received from any vehicle is promptly and correctly propagated to nearby vehicles, to prevent accidents. A crucial point is how to trust the information transmitted, when the neighboring vehicles are rapidly changing and moving in and out of range. Current trust management schemes for vehicular networks establish trust by voting on the decision received by several nodes, which might not be required for practical scenarios. It might just be enough to check the validity of incoming information. Due to the ephemeral nature of vehicular networks, reputation schemes for mobile ad hoc networks (MANETs) cannot be applied to vehicular ad hoc networks (VANET). We point out several limitations of trust management schemes for VANET. In particular, we identify the problem of information cascading and oversampling, which commonly arise in social networks. Oversampling is a situation in which a node observing two or more nodes, takes into consideration both their opinions equally without knowing that they might have influenced each other in decision making. We show that simple voting for decision making, leads to oversampling and gives incorrect results. We propose an algorithm to overcome this problem in VANET. This is the first paper which discusses the concept of cascading effect and oversampling effects to ad hoc networks. © 2011 IEEE.
Resumo:
Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry was established to develop field-deployable biodosimeters based, in part, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter.
Resumo:
This paper addresses the issue of institutional barriers to the Yangtze River Delta integration and the resulting slow development. It analyzes the problems including the coordination of local interests and regional interests, market segmentation during the regional integration, competition for the local government‘s investment on the public goods, labor movement within the delta. The paper argues that to reduce the negative impacts of these barriers and to promote the further integration of the Yangtze Delta region, the central government should strengthen the coordination between local governments, regulate their disorderly competition and reform the official evaluation system.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.