1000 resultados para Countercurrent distribution
Resumo:
This work reports the separation of phenolic compounds present in the metabolic extract of the lichen Neuropogon aurantiaco-ater (Usniaceae). The crude extract was fractionated by droplet counter-current chromatography using a solvent mixture of high polarity (chloroform:methanol:water at 43:37:20, in ascending mode). The separation resulted in the isolation of usnic and protocetratic acid, which were identified by TLC, HPLC, and NMR tests.
Resumo:
The natural naphthopyranones paepalantine (1), paepalantine-9O-β-D-glucopyranoside (2) and paepalantine-9-O-β-D-allopyranosyl-(1→6)-O-β-D-glucopyranoside (3) were separated in a preparative scale from the ethanolic extract of the capitula of Paepalanthus bromelioides by high-speed counter-current chromatography (HSCCC). The solvent system used was composed of water-ethanol-ethyl acetate-hexane (10:4:10:4, v/v/v/v). This technique led to the separation of the three different naphthopyranone glycosides in pure form in approximately 7 hours. Paepalantine showed a good antioxidant activity when assayed by the DPPH radical spectrophotometric assay.
Resumo:
Centrifugal countercurrent distribution (CCCD) in an aqueous two-phase system (TPS) is a resolute technique revealing sperm heterogeneity and for the estimation of the fertilizing potential of a given semen sample. However, separated sperm subpopulations have never been tested for their fertilizing ability yet. Here, we have compared sperm quality parameters and the fertilizing ability of sperm subpopulations separated by the CCCD process from ram semen samples maintained at 20 degrees C or cooled down to 5 degrees C. Total and progressive sperm motility was evaluated by computer-assisted analysis using a CASA system and membrane integrity was evaluated by flow cytometry by staining with CFDA/Pl. The capacitation state, staining with chlortetracycline, and apoptosis-related markers, such as phosphatidylserine (PS) translocation detected with Annexin V. and DNA damage detected by the TUNEL assay, were determined by fluorescence microscopy. Additionally, the fertilizing ability of the fractionated subpopulations was comparative assessed by zona binding assay (ZBA). CCCD analysis revealed that the number of spermatozoa displaying membrane and DNA alterations was higher in samples chilled at 5 degrees C than at 20 degrees C. which can be reflected in the displacement to the left of the CCCD profiles. The spermatozoa located in the central and right chambers (more hydrophobic) presented higher values (P<0.01) of membrane integrity, lower PS translocation (P<0.05) and DNA damage (P<0.001) than those in the left part of the profile, where apoptotic markers were significantly increased and the proportion of viable non-capacitated sperm was reduced. We have developed a new protocol to recover spermatozoa from the CCCD fractions and we proved that these differences were related with the fertilizing ability determined by ZBA, because we found that the number of spermatozoa attached per oocyte was significantly higher for spermatozoa recovered from the central and right chambers, in both types of samples. This is the first time, to our knowledge that sperm recovered from a two-phase partition procedure are used for fertilization assays. These results open up new possibilities for using specific subpopulations of sperm for artificial insemination or in vitro fertilization, not only regarding better sperm quality but also certain characteristics such as subpopulations enriched in spermatozoa bearing X or Y chromosome that we have already isolated or any other feature. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Biomass of seston in the surface layers of coastal waters off Namibia reaches 1 g/m**2 and decreases with distance from the shore. Two regions of high seston biomass, one northern and one southern, are distinguished. A subsurface maximum of seston biomass, presumably coinciding with the stream of compensating countercurrent, is identified in the 200-500 m layer. Similar vertical distribution of plankton is known in upwelling areas of the eastern shores of the Atlantic and Pacific Oceans and in several other ocean areas, such as the area of the Kuril-Kamchatka Trench. This fact probably indicates that life cycles of pelagic animal forms of various taxonomic groups that inhabit them and phases of their ontogenic migrations are similar.
Resumo:
Marine snow (MS) distribution from the surface to 1000 m depth was determined in the equatorial Pacific using the underwater video profiler during the Etude du Broutage en Zone Equatoriale cruise in fall 1996. The latitudinal transect was carried out at 17 stations along the 180° meridian from 8°S to 8°N during a cold phase of El Niño-Southern Oscillation. Higher MS concentrations were found below the equatorial zone than poleward. At the equator the estimated integrated MS carbon/m**2 in the upper kilometer was 5.7 g/m**2, while both southward and northward (between 1° and 8°) the mean integrated MS carbon was about 2.7 g/m**2. In the upper 50 m the MS carbon was twofold lower than the combined carbon of autotrophic and heterotrophic protists and four times lower than the mesozooplankton carbon biomass, both measured concurrently during the cruise. Different water bodies had different MS content. The highest concentrations were found in the South Equatorial Current, the South Equatorial Counter Current, and the North Equatorial Countercurrent. Tropical waters at the south in the South Subsurface Countercurrents and the warm northern superficial waters had the lowest MS biomass. Mechanistically, a latitudinal "conveyor belt", a poleward divergence of upwelled waters that return to the equator after being downwelled at north and south convergent zones, may partially explain the vertical distribution of particulate matter observed during the studied period.
Resumo:
"National Reactor Testing Station"--Cover.
Resumo:
The radiogenic isotope composition of the Rare Earth Element (REE) neodymium (Nd) is a powerful water mass proxy for present and past ocean circulation. The processes controlling the Nd budget of the global ocean are not quantitatively understood and in particular source and sink mechanisms are still under debate. In this study we present the first full water column data set of dissolved Nd isotope compositions and Nd concentrations for the Eastern Equatorial Pacific (EEP), where one of the globally largest Oxygen Minimum Zones (OMZ) is located. This region is of particular interest for understanding the biogeochemical cycling of REEs because anoxic conditions may lead to release of REEs from the shelf, whereas high particle densities and fluxes potentially remove the REEs from the water column. Data were obtained between 11400N and 161S along a nearshore and an offshore transect. Near surface zonal current bands, such as the Equatorial Undercurrent (EUC) and the Subsurface Countercurrent (SSCC), which are supplying oxygen-rich water to the OMZ are characterized by radiogenic Nd isotope signatures (eNd=-2). Surface waters in the northernmost part of the study area are even more radiogenic (eNd = +3), most likely due to release of Nd from volcanogenic material. Deep and bottom waters at the southernmost offshore station (141S) are clearly controlled by advection of water masses with less radiogenic signatures (eNd=- 7) originating from the Southern Ocean. Towards the equator, however, the deep waters show a clear trend towards more radiogenic values of up to eNd=-2. The northernmost station located in the Panama basin shows highly radiogenic Nd isotope signatures in the entire water column, which indicates that particle scavenging, downward transport and release processes play an important role. This is supported by relatively low Nd concentrations in deep waters (3000-6000 m) in the EEP (20 pmol/kg) compared to locations in the Northern and Central Pacific (40-60 pmol/kg), which suggests enhanced removal of Nd in the EEP.