74 resultados para Cotesia rubecula
Resumo:
Polydnaviruses are endogenous particles that are crucial for the survival of endoparasitoid wasps, providing active suppression of the immune function of the lepidopteran host in which wasp larvae develop. The Cotesia rubecula bracovirus (CrBV) is unique in that only four gene products are detected in larval host (Pieris rapae) tissues and expression of CrBV genes is transient, occurring between 4 and 12 h post-parasitization. Two of the four genes, CrV1 and CrV3, have been characterized. CrV1 is a secreted glycoprotein that has been implicated in depolymerization of the actin cytoskeleton of host haemocytes, leading to haemocyte inactivation; CrV3 is a multimeric C-type lectin that shares homology with insect immune lectins. Here, a third CrBV-specific gene is described, CrV2, which is expressed in larval P. rapae tissues. CrV2, which is transcribed in haemocytes and fat body cells, has an ORF of 963 bp that produces a glycoprotein of approximately 40 kDa. CrV2 is secreted into haemolymph and appears to be internalized by host haemocytes. CrV2 has a coiled-coil region predicted at its C-terminus, which may be involved in the formation of putative CrV2 trimers that are detected in haemolymph of parasitized host larvae.
Resumo:
Endoparasitoid insects introduce maternal factors into the body of their host at oviposition to suppress cellular defences for the protection of the developing parasitoid. We have shown that transient expression of polydnavirus genes from a hymenopteran parasitoid Cotesia rubecula (CrPDV) is responsible for the inactivation of hemocytes from the lepidopteran host Pieris rapae. Since the observed downregulation of CrPDV genes in infected host tissues is not due to cis-regulatory elements at the CrV1 gene locus, we speculated that the termination of CrPDV gene expression may be due to cellular inactivation caused by the CrV1-mediated immune suppression of infected tissues. To test this assumption, we isolated an imaginal disc growth factor (IDGF) that is expressed in fat body and hemocytes, the target of viral infection and expression of CrPDV genes. Time-course experiments showed that the level of P. rapae IDGF is not affected by parasitization and polydnavirus infection. However, the amount of highly expressed genes, such as storage proteins, arylphorin and lipophorin, are significantly reduced following parasitization. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
During oviposition, the parasitoid wasp Cotesia congregata injects polydnavirus, venom, and parasitoid eggs into larvae of its lepidopteran host.. the tobacco hornworm, Manduca sexta. Polydnaviruses (PDVs) suppress the immune system of the host and allow the juvenile parasitoids to develop without being encapsulated by host hemocytes mobilized by the immune system. Previous work identified a gene in the Cotesia rubecula PDV (CrV1) that is responsible for depolymerization of actin in hemocytes of the host Pieris rapae during a narrow temporal window from 4 to 8 h post-parasitization. Its expression appears temporally correlated with hemocyte dysfunction. After this time, the hemocytes recover, and encapsulation is then inhibited by other mechanism(s). In contrast, in parasitized tobacco hornworm larvae this type of inactivation in hemocytes of parasitized M. sexta larvae leads to irreversible cellular disruption. We have characterized the temporal pattern of expression of the CrV1-homolog from the C. congregata PDV in host fat body and hemocytes using Northern blots, and localized the protein in host hemocytes with polyclonal antibodies to CrV1 protein produced in P. rapae in response to expression of the CrV1 protein. Host hemocytes stained with FITC-labeled phalloidin, which binds to filamentous actin, were used to observe hemocyte disruption in parasitized and virus-injected hosts and a comparison was made to hemocytes of nonparasitized control larvae. At 24 h post-parasitization host hemocytes were significantly altered compared to those of nonparasitized larvae. Hemocytes front newly parasitized hosts displayed blebbing, inhibition of spreading and adhesion, and overall cell disruption. A CrV1-homolog gene product was localized in host hemocytes using polyclonal CrV1 antibodies, suggesting that CrV1-like gene products of C. congregata's bracovirus are responsible for the impaired immune response of the host. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Most parasitic wasps inject maternal factors into the host hemocoel to suppress the host immune system and ensure successful development of their progeny. Melanization is one of the insect defence mechanisms against intruding pathogens or parasites. We previously isolated from the venom of Cotesia rubecula a 50 kDa protein that blocked melanization in the hemolymph of its host, Pieris rapae [Insect Biochem. Mol. Biol. 33 (2003) 1017]. This protein, designated Vn50, is a serine proteinase homolog (SPH) containing an amino-terminal clip domain. In this work, we demonstrated that recombinant Vn50 bound P. rapae hemolymph components that were recognized by antisera to Tenebrio molitor prophenoloxidase (proPO) and Manduca sexta proPO-activating proteinase (PAP). Vn50 is stable in the host hemolymph-it remained intact for at least 72 It after parasitization. Using M. sexta as a model system, we found that Vn50 efficiently down-regulated proPO activation mediated by M. sexta PAP-1, SPH-1, and SPH-2. Vn50 did not inhibit active phenoloxidase (PO) or PAP-1, but it significantly reduced the proteolysis of proPO. If recombinant Vn50 binds P. rapae proPO and PAP (as suggested by the antibody reactions), it is likely that the molecular interactions among M. sexta proPO, PAP-1, and SPHs were impaired by this venom protein. A similar strategy might be employed by C rubecula to negatively impact the proPO activation reaction in its natural host. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Maternal factors introduced into host insects by endoparasitoid wasps are usually essential for successful parasitism. This includes polydnaviruses (PDVs) that are produced in the reproductive organ of female hymenopteran endoparasitoids and are injected, together with venom proteins, into the host hemocoel at oviposition. Inside the host, PDVs enter various tissue cells and hemocytes where viral genes are expressed, leading to developmental and physiological alterations in the host, including the suppression of the host immune system. Although several studies have shown that some PDVs are only effective when accompanied by venom proteins, there is no report of an active venom ingredient(s) facilitating PDV infection and/or gene expression. In this study, we describe a novel peptide (Vn1.5) isolated from Cotesia rubecula venom that is required for the expression of C. rubecula bracoviruses (CrBVs) in host hemocytes (Pieris rapae), although it is not essential for CrBV entry into host cells. The peptide consists of 14 amino acids with a molecular mass of 1598 Da. In the absence of Vn1.5 or total venom proteins, CrBV genes are not expressed in host cells and did not cause inactivation of host hemocytes.
Resumo:
Polydnaviruses (PDVs) are endogenous particles that are used by some endoparasitic hymenoptera to disrupt host immunity and development. Recent analyses of encapsidated PDV genes have increased the number of known PDV gene families, which are often closely related to insect genes. Several PDV proteins inactivate host haemocytes by damaging their actin cytoskeleton. These proteins share no significant sequence homology and occur in polyphyletic PDV genera, possibly indicating that convergent evolution has produced functionally similar immune-suppressive molecules causing a haemocyte phenotype characterised by damaged cytoskeleton and inactivation. These phenomena provide further insights into the immune-suppressive activity of PDVs and raise interesting questions about PDV evolution, a topic that has puzzled researchers ever since the discovery of PDVs.
Resumo:
Many insect parasitoids that deposit their eggs inside immature stages of other insect species inactivate the cellular host defence to protect the growing embryo from encapsulation. Suppression of encapsulation by polydnavirus-encoded immune-suppressors correlates with specific alterations in hemocytes, mainly cytoskeletal rearrangements and actin-cytoskeleton breakdown. We have previously shown that the Cotesia rubecula polydnavirus gene product CrV1 causes immune suppression when injected into the host hemocoel. CrV1 is taken up by hemocytes although no receptors have been found to bind the protein. Instead CrV1 uptake depends on dimer formation, which is required for interacting with lipophorin, suggesting a CrV1-lipophorin complex internalisation by hemocytes. Since treatment of hemocytes with oligomeric lectins and cytochalasin D can mimic the effects of CrV1, we propose that some dimeric and oligomeric adhesion molecules are able to cross-link receptors on the cell surface and depolymerise actin by leverage-mediated clearance reactions in the hemolymph.
Venom proteins from polydnavirus-producing endoparasitoids: Their role in host-parasite interactions
Resumo:
Endoporasitoid wasps have evolved various mechanisms to ensure successful development of their progeny, including co-injection of a cocktail of maternal secretions into the host hemocoel, including venom, calyx fluid, and polydnoviruses. The components of each type of secretion may influence host physiology and development independently or in a synergistic fashion. For example, venom fluid consists of several peptides and proteins that promote expression of polydnavirus genes in addition to other activities, such as inhibition of prophenoloxidase activation, inhibition of hemocytes spreading and aggregation, and inhibition of development. This review provides a brief overview of advances and prospects in the study of venom proteins from polydnavirus-producing endoparositoid wasps with a special emphasis on the role of C. rubecula venom proteins in host-parositoid interactions.
Resumo:
During oviposition, most endoparasitoid wasps inject maternal factors into their hosts to interfere with host immune reactions and ensure successful development of their progeny. Since encapsulation is a major cellular defensive response of insects against intruding parasites, parasitoids have developed numerous mechanisms to suppress the host encapsulation capability by interfering with every step in the process, including recognition, adherence and spreading. In previous studies, components of Cotesia rubecula venom were shown to inhibit melanization of host hemolymph by interfering with the prophenoloxidase activation cascade and facilitate expression of polydnavirus genes. Here we report the isolation and characterization of another venom protein with similarity to calreticulin. Results indicate that C rubecula calreticulin (CrCRT) inhibits hemocyte spreading behavior, thus preventing encapsulation of the developing parasitoid. It is possible that the protein might function as an antagonist competing for binding sites with the host hemocyte calreticulin, which mediates early-encapsulation reactions. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The relationship between hosts and parasites is one of the most studied interactions between living organisms, and it is both universal and common in nature. Parasitoids are special type of parasites whose offspring develop attached to or within a single host organism that it ultimately consumes and kills. Hosts are arthropods and most parasitoids belong to the insect order Hymenoptera. For almost two decades metapopulation research on the Glanville fritillary butterfly (Melitaea cinxia) has been conducted in the Åland Islands, Finland. The studies have been concerned with the population dynamics, evolution, genetics, behavior, natural history and life history characteristics of M. cinxia, as well as with species interacting with the butterfly. The parasitoids of M. cinxia have been under long term studies and much has been learned about specific host-parasitoid interactions during the past decade. The research for this Master s thesis was done in the Åland Islands during summer 2010. I conducted a reciprocal transplant style experiment in order to compare the performance of host butterflies (M. cinxia) under attack by different parasitoid wasps (C. melitaearum). I used hosts and parasitoids from five origins around the Baltic Sea: Öland, Uppland, Åland, Saaremaa and Pikku-Tytärsaari. The host-parasitoid relationship was studied in terms of host susceptibility and parasitoid virulence, addressing specifically the possible effects of inbreeding and local adaptation of both parasitoids and their hosts. I compared various factors such as host defence ratio, parasitoid development rate, cocoon production rate etc. I also conducted a small scale C. melitaearum egg development experiment and C. melitaearum external morphology comparison between different parasitoid populations. The results show that host resistance and parasitoid virulence differ between both host and parasitoid populations. For example, Öland hosts were most susceptible to parasitoids and especially vulnerable to Pikku-Tytärsaari wasps. Pikku-Tytärsaari wasps were most successful in terms of parasitoids virulence and efficiency except in Saaremaa hosts, where the wasp did not succeed. Saaremaa hosts were resistant except towards Åland parasitoids. I did not find any simple pattern concerning host resistance and parasitoid virulence between inbred and outbred populations. Also, the effect of local adaptation was not detected, perhaps because metapopulation processes disturb local adaptation of the studied populations. Morphological comparisons showed differences between studied wasp populations and sexual dimorphism was obvious with females being bigger that males. There were also interesting differences among populations in male and female wing shapes. The results raise many further questions. Especially interesting were Pikku-Tytärsaari wasps that did well in terms of efficiency and virulence. Pikku-Tytärsaari is a small, isolated island in the Gulf of Finland and both the host and parasitoids are extremely inbred. For the host and parasitoid to persist in the island, the host has to have some mechanisms to escape the parasitoid. Further research will be done on the subject to discover the mechanisms of Pikku-Tytärsaari host s ability to escape parasitism. Also, genetic analyses will be conducted in the near future to determine the relatedness of used C. melitaearum populations.
Resumo:
Successful pest management is often hindered by the inherent complexity of the interactions of a pest with its environment. The use of genetically characterized model plants can allow investigation of chosen aspects of these interactions by limiting the number of variables during experimentation. However, it is important to study the generic nature of these model systems if the data generated are to be assessed in a wider context, for instance, with those systems of commercial significance. This study assesses the suitability of Arabidopsis thaliana (L.) Heynh. (Brassicaceae) as a model host plant to investigate plant-herbivore-natural enemy interactions, with Plutella xylostella (L.) (Lepidoptera: Plutellidae), the diamondback moth, and Cotesia plutellae (Kurdjumov) (Hymenoptera: Braconidae), a parasitoid of P. xylostella. The growth and development of P. xylostella and C. plutellae on an A. thaliana host plant (Columbia type) were compared to that on Brassica rapa var. pekinensis (L.) (Brassicaceae), a host crop that is widely cultivated and also commonly used as a laboratory host for P. xylostella rearing. The second part of the study investigated the potential effect of the different A. thaliana background lines, Columbia and Landsberg (used in wider scientific studies), on growth and development of P. xylostella and C. plutellae. Plutella xylostella life history parameters were found generally to be similar between the host plants investigated. However, C. plutellae were more affected by the differences in host plant. Fewer adult parasitoids resulted from development on A. thaliana compared to B. rapa, and those that did emerge were significantly smaller. Adult male C. plutellae developing on Columbia were also significantly smaller than those on Landsberg A. thaliana.
Resumo:
Interest in sustainable farming methods that rely on alternatives to conventional synthetic fertilizers and pesticides is increasing. Sustainable farming methods often utilize natural populations of predatory and parasitic species to control populations of herbivores, which may be potential pest species. We investigated the effects of several types of fertilizer, including those typical of sustainable and conventional farming systems, on the interaction between a herbivore and parasitoid. The effects of fertilizer type on percentage parasitism, parasitoid performance, parasitoid attack behaviour and responses to plant volatiles were examined using a model Brassica system, consisting of Brassica oleracea var capitata, Plutella xylostella (Lepidoptera) larvae and Cotesia vestalis (parasitoid). Percentage parasitism was greatest for P. xylostella larvae feeding on plants that had received either a synthetic ammonium nitrate fertilizer or were unfertilized, in comparison to those receiving a composite fertilizer containing hoof and horn. Parasitism was intermediate on plants fertilized with an organically produced animal manure. Male parasitoid tibia length showed the same pattern as percentage parasitism, an indication that offspring performance was maximized on the treatments preferred by female parasitoids for oviposition. Percentage parasitism and parasitoid size were not correlated with foliar nitrogen concentration. The parasitoids did not discriminate between hosts feeding on plants in the four fertilizer treatments in parasitoid behaviour assays, but showed a preference for unfertilized plants in olfactometer experiments. The percentage parasitism and tibia length results provide support for the preference–performance hypothesis
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
O objetivo do trabalho foi avaliar diferentes dietas para lagartas de Diatraea saccharalis, com o intuito de obter informações sobre as características biológicas da praga e consequentemente avaliar a qualidade do parasitoide Cotesia flavipes, visando melhorar tecnicamente sua produção massal. Lagartas de 24 horas de idade foram transferidas para tubos (25 lagartas/tubo) contendo dieta artificial com levedura de cerveja e germe de trigo e outra somente com germe de trigo como fonte de proteína. Depois de aproximadamente 15 dias, as lagartas foram retiradas dos tubos e acondicionadas em placas com dieta, sendo observadas lagartas de D. saccharalis não parasitadas e parasitadas para avaliação das características biológicas de D. saccharalis e C. flavipes.nas diferentes dietas. Além da observação das características biológicas de D. saccharalis, foram realizadas medições nas lagartas de 15 dias de idade. Também, massas de pupas de C. flavipes.produzidas em biofábrica foram classificadas em três diferentes tamanhos, sendo pequenas (1,3 a 2,5 cm de comprimento), médias (2,5 a 3,5 cm de comprimento) e grandes (3,5 a 4,0 cm de comprimento). Após a emergência dos adultos foi realizado o parasitismo em lagartas de D. saccharalis, sendo observados o número de machos e fêmeas, tamanho da massa, razão sexual e número de pupas inviáveis. A dieta artificial que contém somente germe de trigo é a mais indicada para criação massal do hospedeiro D. saccharalis para produção em larga escala de C. flavipes. Massas de pupas classificadas como grandes possuem melhor qualidade em criações massais de C. flavipes.