375 resultados para Cosmological solustions
Resumo:
The present work investigates some consequences that arise from the use of a modifed lagrangean for the eletromagnetic feld in two diferent contexts: a spatially homogeneous and isotropic universe whose dynamics is driven by a magnetic feld plus a cosmological parameter A, and the problem of a static and charged point mass (charged black hole). In the cosmological case, three diferent general solutions were derived. The first, with a null cosmological parameter A, generalizes a particular solution obtained by Novello et al [gr-qc/9806076]. The second one admits a constant A and the third one allows A to be a time-dependent parameter that sustains a constant magnetic feld. The first two solutions are non-singular and exhibit in ationary periods. The third case studied shows an in ationary dynamics except for a short period of time. As for the problem of a charged point mass, the solutions of the Einstein-Maxwell equations are obtained and compared with the standard Reissner-Nordstrom solution. Contrary to what happens in the cosmological case, the physical singularity is not removed
Resumo:
Much of the published work regarding the Isotropic Singularity is performed under the assumption that the matter source for the cosmological model is a barotropic perfect fluid, or even a perfect fluid with a gamma-law equation of state. There are, however, some general properties of cosmological models which admit an Isotropic Singularity, irrespective of the matter source. In particular, we show that the Isotropic Singularity is a point-like singularity and that vacuum space-times cannot admit an Isotropic Singularity. The relationships between the Isotropic Singularity, and the energy conditions, and the Hubble parameter is explored. A review of work by the authors, regarding the Isotropic Singularity, is presented.
Resumo:
The synthesis of helium in the early Universe depends on many input parameters, including the value of the gravitational coupling during the period when the nucleosynthesis takes place. We compute the primordial abundance of helium as function of the gravitational coupling, using a semi-analytical method, in order to track the influence of G in the primordial nucleosynthesis. To be specific, we construct a cosmological model with varying G, using the Brans-Dicke theory. The greater the value of G at nucleosynthesis period, the greater the predicted abundance of helium. Using the observational data for the abundance of primordial helium, constraints for the time variation of G are established.
Resumo:
We consider the classical stochastic fluctuations of spacetime geometry induced by quantum fluctuations of massless nonconformal matter fields in the early Universe. To this end, we supplement the stress-energy tensor of these fields with a stochastic part, which is computed along the lines of the Feynman-Vernon and Schwinger-Keldysh techniques; the Einstein equation is therefore upgraded to a so-called Einstein-Langevin equation. We consider in some detail the conformal fluctuations of flat spacetime and the fluctuations of the scale factor in a simple cosmological model introduced by Hartle, which consists of a spatially flat isotropic cosmology driven by radiation and dust.
Resumo:
In inflationary cosmological models driven by an inflaton field the origin of the primordial inhomogeneities which are responsible for large-scale structure formation are the quantum fluctuations of the inflaton field. These are usually calculated using the standard theory of cosmological perturbations, where both the gravitational and the inflaton fields are linearly perturbed and quantized. The correlation functions for the primordial metric fluctuations and their power spectrum are then computed. Here we introduce an alternative procedure for calculating the metric correlations based on the Einstein-Langevin equation which emerges in the framework of stochastic semiclassical gravity. We show that the correlation functions for the metric perturbations that follow from the Einstein-Langevin formalism coincide with those obtained with the usual quantization procedures when the scalar field perturbations are linearized. This method is explicitly applied to a simple model of chaotic inflation consisting of a Robertson-Walker background, which undergoes a quasi-de Sitter expansion, minimally coupled to a free massive quantum scalar field. The technique based on the Einstein-Langevin equation can, however, deal naturally with the perturbations of the scalar field even beyond the linear approximation, as is actually required in inflationary models which are not driven by an inflaton field, such as Starobinsky¿s trace-anomaly driven inflation or when calculating corrections due to nonlinear quantum effects in the usual inflaton driven models.
Resumo:
We examine plane-symmetric cosmological solutions to Einstein's equations which can be generated by the "soliton" technique, using the homogeneous Bianchi solutions as seeds and arbitrary numbers of real or complex poles. In some circumstances, these solutions can be interpreted as "incipient" gravitational waves on the Bianchi background. At early times they look like nonlinear inhomogeneities propagating at nearly the speed of light ("gravisolitons"), while at late times they look like cosmological gravitational waves.
Resumo:
Particle production in a cosmological spacetime with extra dimensions is discussed. A five-dimensional cosmological model with a three-dimensional space expanding isotropically like in a radiative Friedmann-Robertson-Walker model and an internal space contracting to a constant small size is considered. The parameters of the model are adjusted so that time variations in internal space are compatible with present limits on time variations of the fundamental constants. By requiring that the energy density of the particles produced be less than the critical density at the radiation era we set restrictions on two more parameters: namely, the initial time of application of the semiclassical approach and the relative sizes between the internal space and the horizon of the ordinary Universe at this time. Whereas the production of massless particles allows a large range of variation to these parameters, the production of massive particles sets severe constraints on them, since, if they are overproduced, their energy density might very soon dominate the Universe and make cosmological dimensional reduction by extradimensional contraction unlikely.
Resumo:
Some generalized soliton solutions of the cosmological EinsteinRosen type defined in the space-time region t2=z2 in terms of canonical coordinates are considered. Vacuum solutions are studied and interpreted as cosmological models. Fluid solutions are also considered and are seen to represent inhomogeneous cosmological models that become homogeneous at t?8. A subset of them evolve toward isotropic FriedmannRobertsonWalker metrics.
Resumo:
Networks often represent systems that do not have a long history of study in traditional fields of physics; albeit, there are some notable exceptions, such as energy landscapes and quantum gravity. Here, we consider networks that naturally arise in cosmology. Nodes in these networks are stationary observers uniformly distributed in an expanding open Friedmann-Lemaitre-Robertson-Walker universe with any scale factor and two observers are connected if one can causally influence the other. We show that these networks are growing Lorentz-invariant graphs with power-law distributions of node degrees. These networks encode maximum information about the observable universe available to a given observer.