960 resultados para Correlation structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selection criteria and misspecification tests for the intra-cluster correlation structure (ICS) in longitudinal data analysis are considered. In particular, the asymptotical distribution of the correlation information criterion (CIC) is derived and a new method for selecting a working ICS is proposed by standardizing the selection criterion as the p-value. The CIC test is found to be powerful in detecting misspecification of the working ICS structures, while with respect to the working ICS selection, the standardized CIC test is also shown to have satisfactory performance. Some simulation studies and applications to two real longitudinal datasets are made to illustrate how these criteria and tests might be useful.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A modeling paradigm is proposed for covariate, variance and working correlation structure selection for longitudinal data analysis. Appropriate selection of covariates is pertinent to correct variance modeling and selecting the appropriate covariates and variance function is vital to correlation structure selection. This leads to a stepwise model selection procedure that deploys a combination of different model selection criteria. Although these criteria find a common theoretical root based on approximating the Kullback-Leibler distance, they are designed to address different aspects of model selection and have different merits and limitations. For example, the extended quasi-likelihood information criterion (EQIC) with a covariance penalty performs well for covariate selection even when the working variance function is misspecified, but EQIC contains little information on correlation structures. The proposed model selection strategies are outlined and a Monte Carlo assessment of their finite sample properties is reported. Two longitudinal studies are used for illustration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selecting an appropriate working correlation structure is pertinent to clustered data analysis using generalized estimating equations (GEE) because an inappropriate choice will lead to inefficient parameter estimation. We investigate the well-known criterion of QIC for selecting a working correlation Structure. and have found that performance of the QIC is deteriorated by a term that is theoretically independent of the correlation structures but has to be estimated with an error. This leads LIS to propose a correlation information criterion (CIC) that substantially improves the QIC performance. Extensive simulation studies indicate that the CIC has remarkable improvement in selecting the correct correlation structures. We also illustrate our findings using a data set from the Madras Longitudinal Schizophrenia Study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Efficiency of analysis using generalized estimation equations is enhanced when intracluster correlation structure is accurately modeled. We compare two existing criteria (a quasi-likelihood information criterion, and the Rotnitzky-Jewell criterion) to identify the true correlation structure via simulations with Gaussian or binomial response, covariates varying at cluster or observation level, and exchangeable or AR(l) intracluster correlation structure. Rotnitzky and Jewell's approach performs better when the true intracluster correlation structure is exchangeable, while the quasi-likelihood criteria performs better for an AR(l) structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The method of generalised estimating equations for regression modelling of clustered outcomes allows for specification of a working matrix that is intended to approximate the true correlation matrix of the observations. We investigate the asymptotic relative efficiency of the generalised estimating equation for the mean parameters when the correlation parameters are estimated by various methods. The asymptotic relative efficiency depends on three-features of the analysis, namely (i) the discrepancy between the working correlation structure and the unobservable true correlation structure, (ii) the method by which the correlation parameters are estimated and (iii) the 'design', by which we refer to both the structures of the predictor matrices within clusters and distribution of cluster sizes. Analytical and numerical studies of realistic data-analysis scenarios show that choice of working covariance model has a substantial impact on regression estimator efficiency. Protection against avoidable loss of efficiency associated with covariance misspecification is obtained when a 'Gaussian estimation' pseudolikelihood procedure is used with an AR(1) structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates how the correlations implied by a first-order simultaneous autoregressive (SAR(1)) process are affected by the weights matrix and the autocorrelation parameter. A graph theoretic representation of the covariances in terms of walks connecting the spatial units helps to clarify a number of correlation properties of the processes. In particular, we study some implications of row-standardizing the weights matrix, the dependence of the correlations on graph distance, and the behavior of the correlations at the extremes of the parameter space. Throughout the analysis differences between directed and undirected networks are emphasized. The graph theoretic representation also clarifies why it is difficult to relate properties ofW to correlation properties of SAR(1) models defined on irregular lattices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A total of 20,065 weights recorded on 3016 Nelore animals were used to estimate covariance functions for growth from birth to 630 days of age, assuming a parametric correlation structure to model within-animal correlations. The model of analysis included fixed effects of contemporary groups and age of dam as quadratic covariable. Mean trends were taken into account by a cubic regression on orthogonal polynomials of animal age. Genetic effects of the animal and its dam and maternal permanent environmental effects were modelled by random regressions on Legendre polynomials of age at recording. Changes in direct permanent environmental effect variances were modelled by a polynomial variance function, together with a parametric correlation function to account for correlations between ages. Stationary and nonstationary models were used to model within-animal correlations between different ages. Residual variances were considered homogeneous or heterogeneous, with changes modelled by a step or polynomial function of age at recording. Based on Bayesian information criterion, a model with a cubic variance function combined with a nonstationary correlation function for permanent environmental effects, with 49 parameters to be estimated, fitted best. Modelling within-animal correlations through a parametric correlation structure can describe the variation pattern adequately. Moreover, the number of parameters to be estimated can be decreased substantially compared to a model fitting random regression on Legendre polynomial of age. © 2004 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose a multivariate GARCH model with a time-varying conditional correlation structure. The new double smooth transition conditional correlation (DSTCC) GARCH model extends the smooth transition conditional correlation (STCC) GARCH model of Silvennoinen and Teräsvirta (2005) by including another variable according to which the correlations change smoothly between states of constant correlations. A Lagrange multiplier test is derived to test the constancy of correlations against the DSTCC-GARCH model, and another one to test for another transition in the STCC-GARCH framework. In addition, other specification tests, with the aim of aiding the model building procedure, are considered. Analytical expressions for the test statistics and the required derivatives are provided. Applying the model to the stock and bond futures data, we discover that the correlation pattern between them has dramatically changed around the turn of the century. The model is also applied to a selection of world stock indices, and we find evidence for an increasing degree of integration in the capital markets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Spatial data analysis has become more and more important in the studies of ecology and economics during the last decade. One focus of spatial data analysis is how to select predictors, variance functions and correlation functions. However, in general, the true covariance function is unknown and the working covariance structure is often misspecified. In this paper, our target is to find a good strategy to identify the best model from the candidate set using model selection criteria. This paper is to evaluate the ability of some information criteria (corrected Akaike information criterion, Bayesian information criterion (BIC) and residual information criterion (RIC)) for choosing the optimal model when the working correlation function, the working variance function and the working mean function are correct or misspecified. Simulations are carried out for small to moderate sample sizes. Four candidate covariance functions (exponential, Gaussian, Matern and rational quadratic) are used in simulation studies. With the summary in simulation results, we find that the misspecified working correlation structure can still capture some spatial correlation information in model fitting. When the sample size is large enough, BIC and RIC perform well even if the the working covariance is misspecified. Moreover, the performance of these information criteria is related to the average level of model fitting which can be indicated by the average adjusted R square ( [GRAPHICS] ), and overall RIC performs well.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The success of any diversification strategy depends upon the quality of the estimated correlation between assets. It is well known, however, that there is a tendency for the average correlation among assets to increase when the market falls and vice-versa. Thus, assuming that the correlation between assets is a constant over time seems unrealistic. Nonetheless, these changes in the correlation structure as a consequence of changes in the market’s return suggests that correlation shifts can be modelled as a function of the market return. This is the idea behind the model of Spurgin et al (2000), which models the beta or systematic risk, of the asset as a function of the returns in the market. This is an approach that offers particular attractions to fund managers as it suggest ways by which they can adjust their portfolios to benefit from changes in overall market conditions. In this paper the Spurgin et al (2000) model is applied to 31 real estate market segments in the UK using monthly data over the period 1987:1 to 2000:12. The results show that a number of market segments display significant negative correlation shifts, while others show significantly positive correlation shifts. Using this information fund managers can make strategic and tactical portfolio allocation decisions based on expectations of market volatility alone and so help them achieve greater portfolio performance overall and especially during different phases of the real estate cycle.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The study of the genetic variance/covariance matrix (G-matrix) is a recent and fruitful approach in evolutionary biology, providing a window of investigating for the evolution of complex characters. Although G-matrix studies were originally conducted for microevolutionary timescales, they could be extrapolated to macroevolution as long as the G-matrix remains relatively constant, or proportional, along the period of interest. A promising approach to investigating the constancy of G-matrices is to compare their phenotypic counterparts (P-matrices) in a large group of related species; if significant similarity is found among several taxa, it is very likely that the underlying G-matrices are also equivalent. Here we study the similarity of covariance and correlation structure in a broad sample of Old World monkeys and apes (Catarrhini). We made phylogenetically structured comparisons of correlation and covariance matrices derived from 39 skull traits, ranging from between species to the superfamily level. We also compared the overall magnitude of integration between skull traits (r(2)) for all Catarrhim genera. Our results show that P-matrices were not strictly constant among catarrhines, but the amount of divergence observed among taxa was generally low. There was significant and positive correlation between the amount of divergence in correlation and covariance patterns among the 30 genera and their phylogenetic distances derived from a recently proposed phylogenetic hypothesis. Our data demonstrate that the P-matrices remained relatively similar along the evolutionary history of catarrhines, and comparisons with the G-matrix available for a New World monkey genus (Saguinus) suggests that the same holds for all anthropoids. The magnitude of integration, in contrast, varied considerably among genera, indicating that evolution of the magnitude, rather than the pattern of inter-trait correlations, might have played an important role in the diversification of the catarrhine skull. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: First-eye cataract surgery can reduce the rate of falls among older adults, yet the effect of second-eye surgery on the rate of falling remains unclear. The present study investigated the effect of monocular and binocular simulated cataract blur on postural stability among older adults. Methods: Postural stability was assessed on 34 healthy older adults (mean 68.2 years, SD 3.5) with normal vision, using a portable force platform (BT4, HUR Labs, Finland) which collected data on centre of pressure (COP) displacement. Stability was assessed on firm and foam surfaces under four binocular viewing conditions using Vistech filters to simulate cataract blur: [1] best-corrected vision both eyes; [2] blur over non-dominant eye, [3] blur over dominant eye and [4] blur over both eyes. Binocular logMAR visual acuity, Pelli-Robson contrast sensitivity and stereoacuity were also measured under these viewing conditions and ocular dominance measured using the hole-in-card test. Generalized estimating equations with an exchangeable correlation structure examined the effect of the surface and vision conditions on postural stability. Results: Visual acuity and contrast sensitivity were significantly reduced under monocular and binocular cataract blur compared to normal viewing. All blur conditions resulted in loss of stereoacuity. Binocular cataract blur significantly reduced postural stability compared to normal vision on the firm (COP path length; p=0.013) and foam surface (anterior-posterior COP RMS, COP path length and COP area; p<0.01). However, no significant differences in postural stability were found between the monocular blur conditions compared to normal vision, or between the dominant and non-dominant monocular blur conditions on either the firm or foam surfaces. Conclusions: Findings indicate that binocular blur significantly impairs postural stability, and suggests that improvements in postural stability may justify first-eye cataract surgery, particularly during somatosensory disruption. Postural stability was not significantly impaired in the monocular cataract blur conditions compared to the normal vision condition, nor was there any effect of ocular dominance on postural stability in the presence of monocular cataract blur.