888 resultados para Corpus Paroemiographorum Graecorum
Resumo:
Mode of access: Internet.
Resumo:
Od. 17.218 constituye el registro más antiguo del proverbio griego sobre a´Çünidad entre semejantes, recordado numerosas veces y bajo gran variedad de enunciados en la tradición paremiográ´Çü ca griega. Este artículo propone un estudio de dicho proverbio, que se inicia con una revisión del antiguo concepto de paroimía, con especial referencia a su vinculación con el concepto de gnome. A continuación se analiza el sentido del proverbio homérico y los rasgos inherentes a su inserción en el texto de Odisea. Por último, se examina la proyección del proverbio en autores griegos y en las colecciones del Corpus Paroemiographorum Graecorum.
Resumo:
Od. 17.218 constituye el registro más antiguo del proverbio griego sobre a´Çünidad entre semejantes, recordado numerosas veces y bajo gran variedad de enunciados en la tradición paremiográ´Çü ca griega. Este artículo propone un estudio de dicho proverbio, que se inicia con una revisión del antiguo concepto de paroimía, con especial referencia a su vinculación con el concepto de gnome. A continuación se analiza el sentido del proverbio homérico y los rasgos inherentes a su inserción en el texto de Odisea. Por último, se examina la proyección del proverbio en autores griegos y en las colecciones del Corpus Paroemiographorum Graecorum.
Resumo:
Od. 17.218 constituye el registro más antiguo del proverbio griego sobre a´Çünidad entre semejantes, recordado numerosas veces y bajo gran variedad de enunciados en la tradición paremiográ´Çü ca griega. Este artículo propone un estudio de dicho proverbio, que se inicia con una revisión del antiguo concepto de paroimía, con especial referencia a su vinculación con el concepto de gnome. A continuación se analiza el sentido del proverbio homérico y los rasgos inherentes a su inserción en el texto de Odisea. Por último, se examina la proyección del proverbio en autores griegos y en las colecciones del Corpus Paroemiographorum Graecorum.
Resumo:
Mode of access: Internet.
Resumo:
The QUT-NOISE-TIMIT corpus consists of 600 hours of noisy speech sequences designed to enable a thorough evaluation of voice activity detection (VAD) algorithms across a wide variety of common background noise scenarios. In order to construct the final mixed-speech database, a collection of over 10 hours of background noise was conducted across 10 unique locations covering 5 common noise scenarios, to create the QUT-NOISE corpus. This background noise corpus was then mixed with speech events chosen from the TIMIT clean speech corpus over a wide variety of noise lengths, signal-to-noise ratios (SNRs) and active speech proportions to form the mixed-speech QUT-NOISE-TIMIT corpus. The evaluation of five baseline VAD systems on the QUT-NOISE-TIMIT corpus is conducted to validate the data and show that the variety of noise available will allow for better evaluation of VAD systems than existing approaches in the literature.
Resumo:
Extracellular matrix regulates many cellular processes likely to be important for development and regression of corpora lutea. Therefore, we identified the types and components of the extracellular matrix of the human corpus luteum at different stages of the menstrual cycle. Two different types of extracellular matrix were identified by electron microscopy; subendothelial basal laminas and an interstitial matrix located as aggregates at irregular intervals between the non-vascular cells. No basal laminas were associated with luteal cells. At all stages, collagen type IV α1 and laminins α5, β2 and γ1 were localized by immunohistochemistry to subendothelial basal laminas, and collagen type IV α1 and laminins α2, α5, β1 and β2 localized in the interstitial matrix. Laminin α4 and β1 chains occurred in the subendothelial basal lamina from mid-luteal stage to regression; at earlier stages, a punctate pattern of staining was observed. Therefore, human luteal subendothelial basal laminas potentially contain laminin 11 during early luteal development and, additionally, laminins 8, 9 and 10 at the mid-luteal phase. Laminin α1 and α3 chains were not detected in corpora lutea. Versican localized to the connective tissue extremities of the corpus luteum. Thus, during the formation of the human corpus luteum, remodelling of extracellular matrix does not result in basal laminas as present in the adrenal cortex or ovarian follicle. Instead, novel aggregates of interstitial matrix of collagen and laminin are deposited within the luteal parenchyma, and it remains to be seen whether this matrix is important for maintaining the luteal cell phenotype.
Resumo:
In this paper, we describe a machine-translated parallel English corpus for the NTCIR Chinese, Japanese and Korean (CJK) Wikipedia collections. This document collection is named CJK2E Wikipedia XML corpus. The corpus could be used by the information retrieval research community and knowledge sharing in Wikipedia in many ways; for example, this corpus could be used for experimentations in cross-lingual information retrieval, cross-lingual link discovery, or omni-lingual information retrieval research. Furthermore, the translated CJK articles could be used to further expand the current coverage of the English Wikipedia.
Resumo:
Measures of semantic similarity between medical concepts are central to a number of techniques in medical informatics, including query expansion in medical information retrieval. Previous work has mainly considered thesaurus-based path measures of semantic similarity and has not compared different corpus-driven approaches in depth. We evaluate the effectiveness of eight common corpus-driven measures in capturing semantic relatedness and compare these against human judged concept pairs assessed by medical professionals. Our results show that certain corpus-driven measures correlate strongly (approx 0.8) with human judgements. An important finding is that performance was significantly affected by the choice of corpus used in priming the measure, i.e., used as evidence from which corpus-driven similarities are drawn. This paper provides guidelines for the implementation of semantic similarity measures for medical informatics and concludes with implications for medical information retrieval.
Resumo:
This paper evaluates the efficiency of a number of popular corpus-based distributional models in performing discovery on very large document sets, including online collections. Literature-based discovery is the process of identifying previously unknown connections from text, often published literature, that could lead to the development of new techniques or technologies. Literature-based discovery has attracted growing research interest ever since Swanson's serendipitous discovery of the therapeutic effects of fish oil on Raynaud's disease in 1986. The successful application of distributional models in automating the identification of indirect associations underpinning literature-based discovery has been heavily demonstrated in the medical domain. However, we wish to investigate the computational complexity of distributional models for literature-based discovery on much larger document collections, as they may provide computationally tractable solutions to tasks including, predicting future disruptive innovations. In this paper we perform a computational complexity analysis on four successful corpus-based distributional models to evaluate their fit for such tasks. Our results indicate that corpus-based distributional models that store their representations in fixed dimensions provide superior efficiency on literature-based discovery tasks.