894 resultados para Coronary circulation
Resumo:
Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of plateletderived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P 0.001), followed by a significant increase to the end of angioplasty (P 0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin–antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.
Resumo:
Exogenous adenosine causes a monophasic dilation of the coronary vessels in paced, perfused rat heart preparations. Because levels of endogenous adenosine in paced hearts may mask the presence of high potency adenosine receptors, we have developed a method to measure coronary vascular responses in a potassium-arrested heart. Hearts from adult male, Wistar rats were perfused at a constant flow rate of 10 mL/min in the nonrecirculating, Langendorff mode, using Krebs-Henseleit buffer. After 30 min, coronary perfusion pressure was 44 +/- 1 mmHg (mean +/- SEM). Hearts were then perfused with a modified Krebs-Henseleit buffer containing 35 mM potassium. Coronary perfusion pressure increased by 84 +/- 3 mmHg. Adenosine-induced reductions in coronary perfusion pressure were expressed as a percentage of the maximal increase in pressure produced by modified Krebs-Henseleit buffer from the equilibration level. A concentration-response curve for adenosine (n = 6) was biphasic and best described by the presence of two adenosine receptors, with negative log EC50 values of 8.8 +/- 0.3 and 4.3 +/- 0.1, representing 29 +/- 3 and 71 +/- 3%, respectively, of the observed response. Interstitial adenosine sampled by microdialysis during potassium arrest was 25% of the concentration found in paced hearts. Endogenous adenosine in nonarrested hearts may obscure the biphasic response of the coronary vessels to adenosine.
Resumo:
In vivo observations of microcirculatory behavior during autoregulation and adaptation to varying myocardial oxygen demand are scarce in the human coronary system. This study assessed microvascular reactions to controlled metabolic and pressure provocation [bicycle exercise and external counterpulsation (ECP)]. In 20 healthy subjects, quantitative myocardial contrast echocardiography and arterial applanation tonometry were performed during increasing ECP levels, as well as before and during bicycle exercise. Myocardial blood flow (MBF; ml·min(-1)·g(-1)), the relative blood volume (rBV; ml/ml), the coronary vascular resistance index (CVRI; dyn·s·cm(-5)/g), the pressure-work index (PWI), and the pressure-rate product (mmHg/min) were assessed. MBF remained unchanged during ECP (1.08 ± 0.44 at baseline to 0.92 ± 0.38 at high-level ECP). Bicycle exercise led to an increase in MBF from 1.03 ± 0.39 to 3.42 ± 1.11 (P < 0.001). The rBV remained unchanged during ECP, whereas it increased under exercise from 0.13 ± 0.033 to 0.22 ± 0.07 (P < 0.001). The CVRI showed a marked increase under ECP from 7.40 ± 3.38 to 11.05 ± 5.43 and significantly dropped under exercise from 7.40 ± 2.78 to 2.21 ± 0.87 (both P < 0.001). There was a significant correlation between PWI and MBF in the pooled exercise data (slope: +0.162). During ECP, the relationship remained similar (slope: +0.153). Whereas physical exercise decreases coronary vascular resistance and induces considerable functional capillary recruitment, diastolic pressure transients up to 140 mmHg trigger arteriolar vasoconstriction, keeping MBF and functional capillary density constant. Demand-supply matching was maintained over the entire ECP pressure range.
Resumo:
The coronary collateral circulation is an alternative source of blood supply to a myocardial area jeopardized by the failure of the stenotic or occluded vessel to provide enough blood flow to this region. Until recently, only qualitative or semiqualitative methods have been available for the assessment of the coronary collateral circulation in humans, such as the patient's history of walk-through angina pectoris, the registration of intracoronary ECG signs for myocardial ischaemia or angina pectoris during coronary occlusion, or coronary angiographic classification (score 0-3) of collaterals. Studies of coronary wedge pressure measurements distal of a balloon-occluded coronary artery and the recent advent of ultrathin pressure and Doppler angioplasty guidewires have made it possible to obtain pressure or flow velocity data in remote vascular areas and, thus, to calculate functional variables for coronary collateral flow. Those coronary occlusive pressure- and flow velocity-derived parameters express collateral flow as a fraction of antegrade coronary flow during vessel patency of the collateral-receiving vessel. They are both interchangeable, and they have been validated in comparison to 'traditional' methods and against each other. The possibility of accurately measuring coronary collateral flow indices in humans undergoing coronary balloon angioplasty opens areas of investigation of the pathogenesis, pathophysiology and therapeutic promotion of the collateral circulation previously reserved for exclusively experimental studies. The purpose of this article is to review several clinically available methods for the functional characterization of the coronary collateral circulation.
Resumo:
Lipocalin-type prostaglandin D synthase (L-PGDS) is localized in the central nervous system and male genital organs of various mammals and is secreted as β-trace into the closed compartment of these tissues separated from the systemic circulation. In this study, we found that the mRNA for the human enzyme was expressed most intensely in the heart among various tissues examined. In human autopsy specimens, the enzyme was localized immunocytochemically in myocardial cells, atrial endocardial cells, and a synthetic phenotype of smooth muscle cells in the arteriosclerotic intima, and accumulated in the atherosclerotic plaque of coronary arteries with severe stenosis. In patients with stable angina (75–99% stenosis), the plasma level of L-PGDS was significantly (P < 0.05) higher in the great cardiac vein (0.694 ± 0.054 μg/ml, n = 7) than in the coronary artery (0.545 ± 0.034 μg/ml), as determined by a sandwich enzyme immunoassay. However, the veno-arterial difference in the plasma L-PGDS concentration was not observed in normal subjects without stenosis. After a percutaneous transluminal coronary angioplasty was performed to compress the stenotic atherosclerotic plaques, the L-PGDS concentration in the cardiac vein decreased significantly (P < 0.05) to 0.610 ± 0.051 μg/ml at 20 min and reached the arterial level within 1 h. These findings suggest that L-PGDS is present in both endocardium and myocardium of normal subjects and the stenotic site of patients with stable angina and is secreted into the coronary circulation.
Resumo:
Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of platelet-derived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P=0.001), followed by a significant increase to the end of angioplasty (P=0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin-antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.
Resumo:
The functional relevance of coronary collaterals in humans has yet to be fully explored. Several studies demonstrated a protective role of collaterals in patients with coronary artery disease. On the other hand, negative aspects of well-developed coronary collaterals have been reported, e.g. a higher rate of restenosis following coronary angioplasty, or a redistribution of blood via collaterals away from the myocardial area in need towards normally perfused areas (coronary steal). In the past, the coronary collateral circulation has been assessed only qualitatively, using visual angiographic or nuclear imaging methods. With the recent advent of intracoronary Doppler and pressure-transducers, quantitative assessment of functional parameters of the coronary circulation has become feasible. This article reviews ongoing research in the field of coronary collaterals in humans, concerning their exact determination, the positive and negative aspects of their structure as well as their functional aspects.
Resumo:
1. The vasodilator effects of adenosine receptor agonists, isoprenaline and histamine were examined in perfused heart preparations from young (4–6 weeks) and mature (12–20 weeks) rats. 2. Adenosine induced a biphasic concentration-dependent decrease in KCl (35 mM) raised coronary perfusion pressure in hearts from young and mature rats, suggesting the presence of both high- and low-affinity sites for adenosine receptors in the two age groups tested. In heart preparations from mature rats, vasodilator responses to adenosine were significantly reduced compared with responses observed in young rats. 3. Responses to 5′-N-ethylcarboxamidoadenosine (NECA) and 2-p-(2-carboxyethyl)phenethylamino-5′-N-ethylcarboxamidoadenosine hydrochloride (CGS-21680) were reduced in preparations from mature rats, whereas the vasodilator actions of N6-cyclopentyladenosine (CPA) and N6-2-(4-aminophenyl)ethyladenosine (APNEA) did not change with age. 4. The results presented in this study suggest that several adenosine receptor subtypes mediate vasodilator responses in the coronary circulation of the rat and that a reduction in response to adenosine with age may be due to changes in the high-affinity receptor site.
Resumo:
BACKGROUND: Mesenchymal stem/stromal cells have unique properties favorable to their use in clinical practice and have been studied for cardiac repair. However, these cells are larger than coronary microvessels and there is controversy about the risk of embolization and microinfarctions, which could jeopardize the safety and efficacy of intracoronary route for their delivery. The index of microcirculatory resistance (IMR) is an invasive method for quantitatively assessing the coronary microcirculation status. OBJECTIVES: To examine heart microcirculation after intracoronary injection of mesenchymal stem/stromal cells with the index of microcirculatory resistance. METHODS: Healthy swine were randomized to receive by intracoronary route either 30x106 MSC or the same solution with no cells (1% human albumin/PBS) (placebo). Blinded operators took coronary pressure and flow measurements, prior to intracoronary infusion and at 5 and 30 minutes post-delivery. Coronary flow reserve (CFR) and the IMR were compared between groups. RESULTS: CFR and IMR were done with a variance within the 3 transit time measurements of 6% at rest and 11% at maximal hyperemia. After intracoronary infusion there were no significant differences in CFR. The IMR was significantly higher in MSC-injected animals (at 30 minutes, 14.2U vs. 8.8U, p = 0.02) and intragroup analysis showed a significant increase of 112% from baseline to 30 minutes after cell infusion, although no electrocardiographic changes or clinical deterioration were noted. CONCLUSION: Overall, this study provides definitive evidence of microcirculatory disruption upon intracoronary administration of mesenchymal stem/stromal cells, in a large animal model closely resembling human cardiac physiology, function and anatomy.
Resumo:
The reptilian heart consists of a thick inner spongy myocardium that derives its oxygen and nutrient supply directly from the blood within the ventricular cavity, which is surrounded by a thin outer compact layer supplied by coronary arteries. The functional importance of these coronary arteries remains unknown. In the present study we investigate the effects of permanent coronary artery occlusion in the South American rattlesnake (Crotalus durissus) on the ability to maintain heart rate and blood pressure at rest and during short term activity. We used colored silicone rubber (Microfil) to identify the coronary artery distribution and interarterial anastomoses. The coronary circulation was occluded and the snakes were then kept for 4 days at 30 degrees C. Microfil injections verified that virtually all coronary arteries had successfully been occluded, but also made visible an extensive coronary supply to the outer compact layer in untreated snakes. Electrocardiogram (ECG), blood pressure (P(sys)) and heart rate (f(H)) were measured at rest and during enforced activity at day 1 and 4. Four days after occlusion of the coronary circulation, the snakes could still maintain a P(sys) and f(H) of 5.2 +/- 0.2 kPa and 58.2 +/- 2.2 beats min(-1), respectively, during activity and the ECG was not affected. This was not different from sham-operated snakes. Thus, while the outer compact layer of the rattlesnake heart clearly has an extensive coronary supply, rattlesnakes sustain a high blood pressure and heart rate during activity without coronary artery blood supply.
Resumo:
The relationship between coronary sinus blood oxygen tension (CSPO 2) and myocardial oxygen tension (MPO 2) variations during cardiac ischemia and reperfusion was studied in anesthetized open-chest dogs. Oxygen tension was measured by a polarographic method. Ischemia resulted in a slightly decreased CSPO 2 and a more pronounced reduction of MPO 2. After reperfusion the CSPO 2 rose rapidly and transiently before it returned gradually to the control level. By contrast, during the recovery period, the MPO 2 increased slowly, with recovery occurring long after the peak of CSPO 2. These data suggest that during the reperfusion phase, the CSPO 2 variation is probably due to opening of the myocardial arteriovenous shunts instead of an increase of flow through the myocardial capillary bed.
Resumo:
Abstract Background In patients with advanced non-ischemic cardiomyopathy (NIC), right-sided cardiac disturbances has prognostic implications. Right coronary artery (RCA) flow pattern and flow reserve (CFR) are not well known in this setting. The purpose of this study was to assess, in human advanced NIC, the RCA phasic flow pattern and CFR, also under right-sided cardiac disturbances, and compare with left coronary circulation. As well as to investigate any correlation between the cardiac structural, mechanical and hemodynamic parameters with RCA phasic flow pattern or CFR. Methods Twenty four patients with dilated severe NIC were evaluated non-invasively, even by echocardiography, and also by cardiac catheterization, inclusive with Swan-Ganz catheter. Intracoronary Doppler (Flowire) data was obtained in RCA and left anterior descendent coronary artery (LAD) before and after adenosine. Resting RCA phasic pattern (diastolic/systolic) was compared between subgroups with and without pulmonary hypertension, and with and without right ventricular (RV) dysfunction; and also with LAD. RCA-CFR was compared with LAD, as well as in those subgroups. Pearson's correlation analysis was accomplished among echocardiographic (including LV fractional shortening, mass index, end systolic wall stress) more hemodynamic parameters with RCA phasic flow pattern or RCA-CFR. Results LV fractional shortening and end diastolic diameter were 15.3 ± 3.5 % and 69.4 ± 12.2 mm. Resting RCA phasic pattern had no difference comparing subgroups with vs. without pulmonary hypertension (1.45 vs. 1.29, p = NS) either with vs. without RV dysfunction (1.47 vs. 1.23, p = NS); RCA vs. LAD was 1.35 vs. 2.85 (p < 0.001). It had no significant correlation among any cardiac mechanical or hemodynamic parameter with RCA-CFR or RCA flow pattern. RCA-CFR had no difference compared with LAD (3.38 vs. 3.34, p = NS), as well as in pulmonary hypertension (3.09 vs. 3.10, p = NS) either in RV dysfunction (3.06 vs. 3.22, p = NS) subgroups. Conclusion In patients with chronic advanced NIC, RCA phasic flow pattern has a mild diastolic predominance, less marked than in LAD, with no effects from pulmonary artery hypertension or RV dysfunction. There is no significant correlation between any cardiac mechanical-structural or hemodynamic parameter with RCA-CFR or RCA phasic flow pattern. RCA flow reserve is still similar to LAD, independently of those right-sided cardiac disturbances.
Resumo:
Animal experiments have shown that the coronary circulation is pressure distensible, i.e., myocardial blood volume (MBV) increases with perfusion pressure. In humans, however, corresponding measurements are lacking so far. We sought to quantify parameters reflecting coronary distensibility such as MBV and coronary resistance (CR) during and after coronary angioplasty. Thirty patients with stable coronary artery disease underwent simultaneous coronary perfusion pressure assessment and myocardial contrast echocardiography (MCE) of 37 coronary arteries and their territories during and after angioplasty. MCE yielded MBV and myocardial blood flow (MBF; in ml · min(-1) · g(-1)). Complete data sets were obtained in 32 coronary arteries and their territories from 26 patients. During angioplasty, perfusion pressure, i.e., coronary occlusive pressure, and MBV varied between 9 and 57 mmHg (26.9 ± 11.9 mmHg) and between 1.2 and 14.5 ml/100 g (6.7 ± 3.7 ml/100 g), respectively. After successful angioplasty, perfusion pressure and MBV increased significantly (P < 0.001 for both) and varied between 64 and 118 mmHg (93.5 ± 12.8 mmHg) and between 3.7 and 17.3 ml/100 g (9.8 ± 3.4 ml/100 g), respectively. Mean MBF increased from 31 ± 20 ml · min(-1) · g(-1) during coronary occlusion, reflecting collateral flow, to 121 ± 33 ml · min(-1) · g(-1) (P < 0.01), whereas mean CR, i.e., the ratio of perfusion pressure and MBF, decreased by 20% (P < 0.001). In conclusion, the human coronary circulation is pressure distensible. MCE allows for the quantification of CR and MBV in humans.
Resumo:
Inactivity is associated with endothelial dysfunction and the development of cardiovascular disease. Exercise training has a favourable effect in the management of hypertension, heart failure and ischaemic heart disease. These beneficial effects are probably mediated through improvements of vascular function and, in this issue of Clinical Science, Hagg and co-authors propose a coronary artery effect. The use of a Doppler technique for non-invasive assessment of coronary flow reserve in a small animal model is an exciting aspect of this study. If feasible in the hands of other investigators, the availability of sequential coronary flow measurements in animal models may help improve our understanding of the mechanisms of disorders of the coronary circulation.