992 resultados para Coronary arteries -- Stenosis -- Relapse
Resumo:
Abstract A literature overview of angiographic studies has shown that the prevalence of significant coronary disease in patients with aortic stenosis (AS) varies from 20 to 60%. Early necropsy studies suggested that patients with AS had a lower than expected incidence of coronary artery disease (CAD), originating the concept of a protective effect of AS on the coronary arteries. The myth of AS protection against CAD would be better explained as endothelium-myocardial interaction (crosstalk) protection triggered by left ventricular overload. Therefore, the cGMP/NO pathway induced by the AS overload pressure would explain the low incidence of CAD, which is compatible with the amazing natural long-term evolution of this cardiac valve disease.
Resumo:
Background-Epicardial coronary injury is by far the most feared complication of epicardial ablation. Little information is available regarding the chronic effects of delivering radiofrequency in the vicinity of large coronary vessels, and the long-term impact of this approach for mapping and ablation on epicardial vessel integrity is poorly understood. Therefore, the aim of this study was to characterize the acute and chronic histopathologic changes produced by in vivo epicardial pulses of radiofrequency ablation on coronary artery of porcine hearts. Methods and Results-Seven pigs underwent a left thoracotomy. The catheter was sutured adjacent to the left anterior descending artery and left circumflex artery, and 20 pulses of radiofrequency energy were applied. Radiofrequency lesions located no more than 1 mm of the vessel were used for this analysis. Three animals were euthanized 20 days (acute phase) after the procedure and 4 animals after 70 days (chronic phase). The following parameters were obtained in each vessel analyzed: (1) internal and external perimeter; (2) vessel wall thickness; (3) tunica media thickness, and (4) tunica intima thickness. The presence of adipose tissue around the coronary arteries, the distance between the artery and the epicardium, and the anatomic relationship of the artery with the coronary vein was also documented for each section. Sixteen of 20 (80%) sections analyzed, showed intimal thickening with a mean of 0.18 +/- 0.14 mm compared with 0.13 +/- 0.16 mm in the acute phase (P=0.331). The mean tunica media thickness was 0.25 +/- 0.10 mm in the chronic phase animals compared with 0.18 +/- 0.03 mm in the acute phase animals (P=0.021). A clear protective effect of pericardial fat and coronary veins was also present. A positive correlation between depth of radiofrequency lesion and the degree of vessel injury expressed as intimal and media thickening (P=0.001) was present. A negative correlation was identified (r = -0.83; P=0.002) between intimal thickening and distance between epicardium and coronary artery. Conclusions-In this porcine model of in vivo epicardial radiofrequency ablation in proximity to coronary arteries leads to acute and chronic histopathologic changes characterized by tunica intima and media thickening, with replacement of smooth muscle cells with extracellular matrix, but no significant stenosis was observed up to 70 days after the ablation. The absence of acute coronary occlusion or injury does not preclude subsequent significant arterial damage, which frequently occurs when epicardial radiofrequency applications are delivered in close vicinity to the vessels. (Circ Arrhythm Electrophysiol. 2011;4:526-531.)
Resumo:
PURPOSE: To investigate the feasibility of high-resolution selective three-dimensional (3D) magnetic resonance coronary angiography (MRCA) in the evaluation of coronary artery stenoses. MATERIALS AND METHODS: In 12 patients with coronary artery stenoses, MRCA of the coronary artery groups, including the coronary segments with stenoses of 50% or greater based on conventional x-ray coronary angiography (CAG), was performed with double-oblique imaging planes by orienting the 3D slab along the major axis of each right coronary artery-left circumflex artery (RCA-LCX) group and each left main trunk-left anterior descending artery (LMT-LAD) group. Ten RCA-LCX and five LMT-LAD MR angiograms were obtained, and the results were compared with those of conventional x-ray angiography. RESULTS: Among 70 coronary artery segments expected to be covered, a total of 49 (70%) segments were fully demonstrated in diagnostic quality. The identification of segmental location of stenoses showed as high an accuracy as 96%. The retrospective analysis for stenosis of 50% or greater yielded the sensitivity, specificity, and accuracy of 80%, 85%, and 84%, respectively. CONCLUSION: Selective 3D MRCA has the potential for segment-by-segment evaluation of major portions of the right and left coronary arteries with high accuracy.
Resumo:
The application of computational fluid dynamics (CFD) and finite element analysis (FEA) has been growing rapidly in the various fields of science and technology. One of the areas of interest is in biomedical engineering. The altered hemodynamics inside the blood vessels plays a key role in the development of the arterial disease called atherosclerosis, which is the major cause of human death worldwide. Atherosclerosis is often treated with the stenting procedure to restore the normal blood flow. A stent is a tubular, flexible structure, usually made of metals, which is driven and expanded in the blocked arteries. Despite the success rate of the stenting procedure, it is often associated with the restenosis (re-narrowing of the artery) process. The presence of non-biological device in the artery causes inflammation or re-growth of atherosclerotic lesions in the treated vessels. Several factors including the design of stents, type of stent expansion, expansion pressure, morphology and composition of vessel wall influence the restenosis process. Therefore, the role of computational studies is crucial in the investigation and optimisation of the factors that influence post-stenting complications. This thesis focuses on the stent-vessel wall interactions followed by the blood flow in the post-stenting stage of stenosed human coronary artery. Hemodynamic and mechanical stresses were analysed in three separate stent-plaque-artery models. Plaque was modeled as a multi-layer (fibrous cap (FC), necrotic core (NC), and fibrosis (F)) and the arterial wall as a single layer domain. CFD/FEA simulations were performed using commercial software packages in several models mimicking the various stages and morphologies of atherosclerosis. The tissue prolapse (TP) of stented vessel wall, the distribution of von Mises stress (VMS) inside various layers of vessel wall, and the wall shear stress (WSS) along the luminal surface of the deformed vessel wall were measured and evaluated. The results revealed the role of the stenosis size, thickness of each layer of atherosclerotic wall, thickness of stent strut, pressure applied for stenosis expansion, and the flow condition in the distribution of stresses. The thicknesses of FC, and NC and the total thickness of plaque are critical in controlling the stresses inside the tissue. A small change in morphology of artery wall can significantly affect the distribution of stresses. In particular, FC is the most sensitive layer to TP and stresses, which could determine plaque’s vulnerability to rupture. The WSS is highly influenced by the deflection of artery, which in turn is dependent on the structural composition of arterial wall layers. Together with the stenosis size, their roles could play a decisive role in controlling the low values of WSS (<0.5 Pa) prone to restenosis. Moreover, the time dependent flow altered the percentage of luminal area with WSS values less than 0.5 Pa at different time instants. The non- Newtonian viscosity model of the blood properties significantly affects the prediction of WSS magnitude. The outcomes of this investigation will help to better understand the roles of the individual layers of atherosclerotic vessels and their risk to provoke restenosis at the post-stenting stage. As a consequence, the implementation of such an approach to assess the post-stented stresses will assist the engineers and clinicians in optimizing the stenting techniques to minimize the occurrence of restenosis.
Resumo:
Diagnostic coronary balloon occlusion (CBO) is mandatory for collateral function assessment, during angioscopy and optical coherence imaging, and when using certain coronary protection devices against emboli. Thus far, the safety of diagnostic CBO regarding procedural and long-term complications in normal coronary arteries has not been studied. In 316 patients, diagnostic CBO was performed for collateral function measurement in 426 angiographically normal vessels. The angioplasty balloon was inflated for 60 to 120 seconds using inflation pressures of 1 to 3 atm, followed by control angiography during and after CBO. Patients were divided into groups with entirely normal (n = 133) and partially normal (n = 183) vessels. Primary end points were procedural and long-term complications. De novo stenosis development was assessed by quantitative coronary angiography in 35% of the patients. Secondary end points were cardiac events at 5 years of follow-up. Procedural complications occurred in 1 patient (0.2%). In 150 repeat angiographic procedures in 92 patients (follow-up duration 10 +/- 15 months), quantitative coronary angiography revealed no difference in percentage diameter narrowing between baseline and follow-up (4.1% vs 3.9%, p = 0.69). During follow-up periods of 14 and 72 months, respectively, a new stenotic lesion was detected in 1 patient in each group (1.3%). Major cardiac events and percutaneous coronary intervention for stable angina were less frequent in the group with entirely normal than with partially normal vessels (0.8% vs 5.5%, p = 0.02, and 0.8% vs 18%, p <0.0001). In conclusion, low-inflation pressure diagnostic CBO in angiographically normal coronary arteries bears a minimal risk for procedural and long-term complications and can therefore be regarded as a safe procedure.
Resumo:
BACKGROUND: Coronary stents improve immediate and late results of balloon angioplasty by tacking up dissections and preventing wall recoil. These goals are achieved within weeks after angioplasty, but with current technology stents permanently remain in the artery, with many limitations including the need for long-term antiplatelet treatment to avoid thrombosis. We report a prospective multicentre clinical trial of coronary implantations of absorbable magnesium stents. METHODS: We enrolled 63 patients (44 men; mean age 61.3 [SD 9.5 years]) in eight centres with single de novo lesions in a native coronary artery in a multicentre, non-randomised prospective study. Follow-up included coronary angiography and intravascular ultrasound at 4 months and clinical assessment at 6 months and 12 months. The primary endpoint was cardiac death, non-fatal myocardial infarction, or clinically driven target lesion revascularisation at 4 months FINDINGS: 71 stents, 10-15 mm in length and 3.0-3.5 mm in diameter, were successfully implanted after pre-dilatation in 63 patients. Diameter stenosis was reduced from 61.5 (SD 13.1%) to 12.6 (5.6%) with an acute gain of 1.41 mm (0.46 mm) and in-stent late loss of 1.08 mm (0.49 mm). The ischaemia-driven target lesion revascularisation rate was 23.8% after 4 months, and the overall target lesion revascularisation rate was 45% after 1 year. No myocardial infarction, subacute or late thrombosis, or death occurred. Angiography at 4 months showed an increased diameter stenosis of 48.4 (17.0%). After serial intravascular ultrasound examinations, only small remnants of the original struts were visible, well embedded into the intima. Neointimal growth and negative remodelling were the main operating mechanisms of restenosis. INTERPRETATION: This study shows that biodegradable magnesium stents can achieve an immediate angiographic result similar to the result of other metal stents and can be safely degraded after 4 months. Modifications of stent characteristics with prolonged degradation and drug elution are currently in development.
Resumo:
PURPOSE To investigate the ex vivo performance of high-resolution computed tomography (CT) for quantitative assessment of percentage diameter stenosis in coronary arteries compared to histopathology. MATERIALS AND METHODS High-resolution CT was performed in 26 human heart specimens after the injection of iodinated contrast media into the coronary arteries. Coronary artery plaques were visually identified on CT images and the grade of stenosis for each plaque was measured with electronic calipers. All coronary plaques were characterized by histopathology according to the Stary classification, and the percentage of stenosis was measured. RESULTS CT depicted 84% (274/326) of all coronary plaques identified by histology. Missed plaques by CT were of Stary type I (n=31), type II (n=16), and type III (n=5). The stenosis degree significantly correlated between CT and histology (r=0.81, p<0.001). CT systematically overestimated the stenosis of calcified plaques (mean difference - 11.0 ± 9.5%, p<0.01) and systematically underestimated the stenosis of non-calcified plaques (mean difference -6.8 ± 10.4%, p<0.05), while there was no significant difference for mixed-type plaques (mean difference -0.4 ± 11.7%, p=0.85). There was a significant underestimation of stenosis degree as measured by CT for Stary II plaques (mean difference -14 ± 9%, p<0.01) and a significant overestimation for Stary VII plaques (mean difference 9 ± 10%, p<0.05), but there was no significant difference in stenosis degree between both modalities for other plaque types. CONCLUSIONS High-resolution CT reliably depicts advanced stage coronary plaques with an overall good correlation of stenosis degree compared to histology, however, the degree of stenosis is systematically overestimated in calcified and underestimated in non-calcified plaques.
Resumo:
Background: The MASS IV-DM Trial is a large project from a single institution, the Heart Institute (InCor), University of Sao Paulo Medical School, Brazil to study ventricular function and coronary arteries in patients with type 2 diabetes mellitus. Methods/Design: The study will enroll 600 patients with type 2 diabetes who have angiographically normal ventricular function and coronary arteries. The goal of the MASS IV-DM Trial is to achieve a long-term evaluation of the development of coronary atherosclerosis by using angiograms and coronary-artery calcium scan by electron-beam computed tomography at baseline and after 5 years of follow-up. In addition, the incidence of major cardiovascular events, the dysfunction of various organs involved in this disease, particularly microalbuminuria and renal function, will be analyzed through clinical evaluation. In addition, an effort will be made to investigate in depth the presence of major cardiovascular risk factors, especially the biochemical profile, metabolic syndrome inflammatory activity, oxidative stress, endothelial function, prothrombotic factors, and profibrinolytic and platelet activity. An evaluation will be made of the polymorphism as a determinant of disease and its possible role in the genesis of micro- and macrovascular damage. Discussion: The MASS IV-DM trial is designed to include diabetic patients with clinically suspected myocardial ischemia in whom conventional angiography shows angiographically normal coronary arteries. The result of extensive investigation including angiographic follow-up by several methods, vascular reactivity, pro-thrombotic mechanisms, genetic and biochemical studies may facilitate the understanding of so-called micro- and macrovascular disease of DM.
Resumo:
Background-The proximity to vascular structures is a limiting factor during radiofrequency ablation. However, little or no attention has been given to the atrial arterial circulation during the development of atrial fibrillation (AF) catheter ablation techniques. Methods and Results-We examined the atrial arterial circulation in areas involved in AF ablation in 24 heart specimens by colored resin injection and careful dissection. The sinus node artery (SNA) arose from the circumflex artery in 42% of case; proximal to the LA appendage in 29%, crossing the left atrium (LA) anterior wall; and after the LA appendage in the remaining 13%, crossing the mitral isthmus and passing close to the left pulmonary veins (PVs), the LA roof, and the right superior PV. In 58%, the SNA arose from the right coronary artery. Major arteries (>= 1 mm in external diameter) were found in the mitral isthmus in 54%, at the LA roof in 54%, and at the LA anterior wall in 29%. Around the left PV ostia, there were areas with major arteries in up to 37% (at the roof and inferior segments) and around the right PV ostia in up to 29% (at the roof segment). Conclusions-Major atrial coronary arteries, including the SNA, were commonly found in the areas involved in AF ablation and could cause difficulties in obtaining transmural lesions and electric isolation or even lead to ischemic sinus node or atrial dysfunction. (Circ Arrhythm Electrophysiol. 2010;3:600-605.)
Resumo:
Optical diagnostic methods, such as near-infrared Raman spectroscopy allow quantification and evaluation of human affecting diseases, which could be useful in identifying and diagnosing atherosclerosis in coronary arteries. The goal of the present work is to apply Independent Component Analysis (ICA) for data reduction and feature extraction of Raman spectra and to perform the Mahalanobis distance for group classification according to histopathology, obtaining feasible diagnostic information to detect atheromatous plaque. An 830nm Ti:sapphire laser pumped by an argon laser provides near-infrared excitation. A spectrograph disperses light scattered from arterial tissues over a liquid-nitrogen cooled CCD to detect the Raman spectra. A total of 111 spectra from arterial fragments were utilized.
Resumo:
This study presents the results of Raman spectroscopy applied to the classification of arterial tissue based on a simplified model using basal morphological and biochemical information extracted from the Raman spectra of arteries. The Raman spectrograph uses an 830-nm diode laser, imaging spectrograph, and a CCD camera. A total of 111 Raman spectra from arterial fragments were used to develop the model, and those spectra were compared to the spectra of collagen, fat cells, smooth muscle cells, calcification, and cholesterol in a linear fit model. Non-atherosclerotic (NA), fatty and fibrous-fatty atherosclerotic plaques (A) and calcified (C) arteries exhibited different spectral signatures related to different morphological structures presented in each tissue type. Discriminant analysis based on Mahalanobis distance was employed to classify the tissue type with respect to the relative intensity of each compound. This model was subsequently tested prospectively in a set of 55 spectra. The simplified diagnostic model showed that cholesterol, collagen, and adipocytes were the tissue constituents that gave the best classification capability and that those changes were correlated to histopathology. The simplified model, using spectra obtained from a few tissue morphological and biochemical constituents, showed feasibility by using a small amount of variables, easily extracted from gross samples.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Biomédica. A presente dissertação foi desenvolvida no Erasmus Medical Center em Roterdão, Holanda
Resumo:
This case report discusses an unusual presentation of ST-segment elevation myocardial infarction (STEMI) with normal coronary arteries and severe mechanical complications successfully treated with surgery. An 82-year-old man presented STEMI with angiographically normal coronary arteries and no major echocardiographic alterations at discharge. At the first month follow-up, he complained of fatigue and dyspnea, and contrast echocardiography complemented by cardiac magnetic resonance imaging revealed a large left ventricular apical aneurysm with a thrombus communicating by two jets of a turbulent flow to an aneurysmatic formation of the right ventricular apex. The patient underwent a Dor procedure, which was successful. Ventricular septal defects and ventricular aneurysms are rare but devastating complications of STEMI, with almost all patients presenting multivessel coronary artery disease. Interestingly in this case, the angiographic pattern was normal.