948 resultados para Corneal topography
Resumo:
Póster presentado en SPIE Photonics Europe, Brussels, 16-19 April 2012.
Resumo:
Resumen de la presentación oral en el 6th EOS Topical Meeting on Visual and Physiological Optics (EMVPO 2012), Dublín, 20-22 Agosto 2012.
Resumo:
Presentación oral realizada en el 6th EOS Topical Meeting on Visual and Physiological Optics (EMVPO 2012), Dublín, 20-22 Agosto 2012.
Resumo:
PURPOSE: The main goal of this study was to develop and compare two different techniques for classification of specific types of corneal shapes when Zernike coefficients are used as inputs. A feed-forward artificial Neural Network (NN) and discriminant analysis (DA) techniques were used. METHODS: The inputs both for the NN and DA were the first 15 standard Zernike coefficients for 80 previously classified corneal elevation data files from an Eyesys System 2000 Videokeratograph (VK), installed at the Departamento de Oftalmologia of the Escola Paulista de Medicina, São Paulo. The NN had 5 output neurons which were associated with 5 typical corneal shapes: keratoconus, with-the-rule astigmatism, against-the-rule astigmatism, "regular" or "normal" shape and post-PRK. RESULTS: The NN and DA responses were statistically analyzed in terms of precision ([true positive+true negative]/total number of cases). Mean overall results for all cases for the NN and DA techniques were, respectively, 94% and 84.8%. CONCLUSION: Although we used a relatively small database, results obtained in the present study indicate that Zernike polynomials as descriptors of corneal shape may be a reliable parameter as input data for diagnostic automation of VK maps, using either NN or DA.
Resumo:
Purpose: To evaluate changes in anterior corneal topography and higher-order aberrations (HOA) after 14-days of rigid gas-permeable (RGP) contact lens (CL) wear in keratoconus subjects comparing two different fitting approaches. Methods: Thirty-one keratoconus subjects (50 eyes) without previous history of CL wear were recruited for the study. Subjects were randomly fitted to either an apical-touch or three-pointtouch fitting approach. The lens’ back optic zone radius (BOZR) was 0.4 mm and 0.1 mm flatter than the first definite apical clearance lens, respectively. Differences between the baseline and post-CL wear for steepest, flattest and average corneal power (ACP) readings, central corneal astigmatism (CCA), maximum tangential curvature (KTag), anterior corneal surface asphericity, anterior corneal surface HOA and thinnest corneal thickness measured with Pentacam were compared. Results: A statistically significant flattening was found over time on the flattest and steepest simulated keratometry and ACP in apical-touch group (all p < 0.01). A statistically significant reduction in KTag was found in both groups after contact lens wear (all p < 0.05). Significant reduction was found over time in CCA (p = 0.001) and anterior corneal asphericity in both groups (p < 0.001). Thickness at the thinnest corneal point increased significantly after CL wear (p < 0.0001). Coma-like and total HOA root mean square (RMS) error were significantly reduced following CL wearing in both fitting approaches (all p < 0.05). Conclusion: Short-term rigid gas-permeable CL wear flattens the anterior cornea, increases the thinnest corneal thickness and reduces anterior surface HOA in keratoconus subjects. Apicaltouch was associated with greater corneal flattening in comparison to three-point-touch lens wear.
Resumo:
Dissertação de mestrado em Optometria Avançada
Resumo:
PURPOSE To compare the occurrence rate and depth of the demarcation line and topographical outcome after corneal cross-linking (CXL) for keratoconus using two different treatment protocols. METHODS A retrospective analysis of 131 eyes with progressive keratoconus treated with CXL using riboflavin and UV-A was performed. Eyes were treated either with the standard Dresden protocol (30 minutes irradiation, 3 mW/cm(2), UV-XTM 1000) or a rapid protocol (10 minutes irradiation, 9 mW/cm(2), UV-XTM 2000). The presence and depth of the corneal demarcation line was assessed with an anterior segment optical coherence tomography device 1 month after CXL by a masked observer. Corneal topography and tomography was performed at baseline and at 12-month follow-up with Pentacam and the TMS (Topographic Modeling System) device. RESULTS In the standard protocol group, 76.5% (62/81) of treated corneas revealed a demarcation line 1 month after CXL, whereas such a demarcation line was observed in only 22% (11/50) of eyes treated with the rapid protocol (P < 0.0001). The demarcation line was significantly more superficial in the rapid protocol group (P = 0.004). Corneal topography values between baseline and 12 months after CXL showed a mean change of -0.76 diopters (D) in Kmax (SD ± 2.7) in the standard protocol group versus a mean change of +0.72 D in Kmax (SD ± 1.5) in the rapid protocol (P = 0.007). CONCLUSIONS The rapid CXL protocol negatively influences the occurrence and depth of the demarcation line 1 month after CXL. Our results show a negative effect on the topographical outcome 1 year after CXL.
Resumo:
Purpose. To assess in a sample of normal, keratoconic, and keratoconus (KC) suspect eyes the performance of a set of new topographic indices computed directly from the digitized images of the Placido rings. Methods. This comparative study was composed of a total of 124 eyes of 106 patients from the ophthalmic clinics Vissum Alicante and Vissum Almería (Spain) divided into three groups: control group (50 eyes), KC group (50 eyes), and KC suspect group (24 eyes). In all cases, a comprehensive examination was performed, including the corneal topography with a Placidobased CSO topography system. Clinical outcomes were compared among groups, along with the discriminating performance of the proposed irregularity indices. Results. Significant differences at level 0.05 were found on the values of the indices among groups by means of Mann-Whitney-Wilcoxon nonparametric test and Fisher exact test. Additional statistical methods, such as receiver operating characteristic analysis and K-fold cross validation, confirmed the capability of the indices to discriminate between the three groups. Conclusions. Direct analysis of the digitized images of the Placido mires projected on the cornea is a valid and effective tool for detection of corneal irregularities. Although based only on the data from the anterior surface of the cornea, the new indices performed well even when applied to the KC suspect eyes. They have the advantage of simplicity of calculation combined with high sensitivity in corneal irregularity detection and thus can be used as supplementary criteria for diagnosing and grading KC that can be added to the current keratometric classifications.
Resumo:
Corneal and anterior segment imaging techniques have become a crucial tool in the clinical practice of ophthalmology, with a great variety of applications, such as corneal curvature and pachymetric analysis, detection of ectatic corneal conditions, anatomical study of the anterior segment prior to phakic intraocular lens implantation, or densitometric analysis of the crystalline lens. From the Placido-based systems that allow only a characterization of the geometry of the anterior corneal surface to the Scheimpflug photography-based systems that provide a characterization of the cornea, anterior chamber, and crystalline lens, there is a great variety of devices with the capability of analyzing different anatomical parameters with very high precision. To date, Scheimpflug photography-based systems are the devices providing the more complete analysis of the anterior segment in a non-invasive way. More developments are required in anterior segment imaging technologies in order to improve the analysis of the crystalline lens structure as well as the ocular structures behind the iris in a non-invasive way when the pupil is not dilated.
Resumo:
Purpose: To analyze and define the possible errors that may be introduced in keratoconus classification when the keratometric corneal power is used in such classification. Materials and methods: Retrospective study including a total of 44 keratoconus eyes. A comprehensive ophthalmologic examination was performed in all cases, which included a corneal analysis with the Pentacam system (Oculus). Classical keratometric corneal power (Pk), Gaussian corneal power (Pc Gauss), True Net Power (TNP) (Gaussian power neglecting the corneal thickness effect), and an adjusted keratometric corneal power (Pkadj) (keratometric power considering a variable keratometric index) were calculated. All cases included in the study were classified according to five different classification systems: Alió-Shabayek, Amsler-Krumeich, Rabinowitz-McDonnell, collaborative longitudinal evaluation of keratoconus (CLEK), and McMahon. Results: When Pk and Pkadj were compared, differences in the type of grading of keratoconus cases was found in 13.6% of eyes when the Alió-Shabayek or the Amsler-Krumeich systems were used. Likewise, grading differences were observed in 22.7% of eyes with the Rabinowitz-McDonnell and McMahon classification systems and in 31.8% of eyes with the CLEK classification system. All reclassified cases using Pkadj were done in a less severe stage, indicating that the use of Pk may lead to the classification of a cornea as keratoconus, being normal. In general, the results obtained using Pkadj, Pc Gauss or the TNP were equivalent. Differences between Pkadj and Pc Gauss were within ± 0.7D. Conclusion: The use of classical keratometric corneal power may lead to incorrect grading of the severity of keratoconus, with a trend to a more severe grading.
Resumo:
PURPOSE: To perform advanced analysis of the corneal deformation response to air pressure in keratoconics compared with age- and sex-matched controls. METHODS: The ocular response analyzer was used to measure the air pressure-corneal deformation relationship of 37 patients with keratoconus and 37 age (mean 36 ± 10 years)- and sex-matched controls with healthy corneas. Four repeat air pressure-corneal deformation profiles were averaged, and 42 separate parameters relating to each element of the profiles were extracted. Corneal topography and pachymetry were performed with the Orbscan II. The severity of the keratoconus was graded based on a single metric derived from anterior corneal curvatures, difference in astigmatism in each meridian, anterior best-fit sphere, and posterior best-fit sphere. RESULTS: Most of the biomechanical characteristics of keratoconic eyes were significantly different from normal eyes (P <0.001), especially during the initial corneal applanation. With increasing keratoconus severity, the cornea was thinner (r = -0.407, P <0.001), the speed of corneal concave deformation past applanation was quicker (dive; r = -0.314, P = 0.01), and the tear film index was lower (r = -0.319, P = 0.01). The variance in keratoconus severity could be accounted for by the corneal curvature and central corneal thickness (r = 0.80) with biomechanical characteristics contributing an additional 4% (total r = 0.84). The area under the receiver operating characteristic curve was 0.919 ± 0.025 for keratometry alone, 0.965 ± 0.014 with the addition of pachymetry, and 0.972 ± 0.012 combined with ocular response analyzer biomechanical parameters. CONCLUSIONS: Characteristics of the air pressure-corneal deformation profile are more affected by keratoconus than the traditionally extracted corneal hysteresis and corneal resistance factors. These biomechanical metrics slightly improved the detection and severity prediction of keratoconus above traditional keratometric and pachymetric assessment of corneal shape.
Resumo:
Purpose. The purpose of this study was to investigate the influence of corneal topography and thickness on intraocular pressure (IOP) and pulse amplitude (PA) as measured using the Ocular Blood Flow Analyzer (OBFA) pneumatonometer (Paradigm Medical Industries, Utah, USA). Methods. 47 university students volunteered for this cross-sectional study: mean age 20.4 yrs, range 18 to 28 yrs; 23 male, 24 female. Only the measurements from the right eye of each participant were used. Central corneal thickness and mean corneal radius were measured using Scheimpflug biometry and corneal topographic imaging respectively. IOP and PA measurements were made with the OBFA pneumatonometer. Axial length was measured using A-scan ultrasound, due to its known correlation with these corneal parameters. Stepwise multiple regression analysis was used to identify those components that contributed significant variance to the independent variables of IOP and PA. Results. The mean IOP and PA measurements were 13.1 (SD 3.3) mmHg and 3.0 (SD 1.2) mmHg respectively. IOP measurements made with the OBFA pneumatonometer correlated significantly with central corneal thickness (r = +0.374, p = 0.010), such that a 10 mm change in CCT was equivalent to a 0.30 mmHg change in measured IOP. PA measurements correlated significantly with axial length (part correlate = -0.651, p < 0.001) and mean corneal radius (part correlate = +0.459, p < 0.001) but not corneal thickness. Conclusions. IOP measurements taken with the OBFA pneumatonometer are correlated with corneal thickness, but not axial length or corneal curvature. Conversely, PA measurements are unaffected by corneal thickness, but correlated with axial length and corneal radius. These parameters should be taken into consideration when interpreting IOP and PA measurements made with the OBFA pneumatonometer.
Resumo:
PURPOSE: To assess the correlation between changes in corneal aberrations and the 2-year change in axial length in children fitted with orthokeratology (OK) contact lenses. METHODS: Thirty-one subjects 6 to 12 years of age and with myopia −0.75 to −4.00DS and astigmatism ≤1.00DC were fitted with OK. Measurements of axial length and corneal topography were taken at regular intervals over a 2-year period. Corneal topography at baseline and after 3 and 24 months of OK lens wear was used to derive higher-order corneal aberrations (HOA) that were correlated with OK-induced axial length changes at 2 years. RESULTS: Significant changes in C3, C4, C4, root mean square (RMS) secondary astigmatism and fourth and total HOA were found with both 3 and 24 months of OK lens wear in comparison with baseline (all P0.05). Coma angle of orientation changed significantly pre-OK in comparison with 3 and 24 months post-OK as well as secondary astigmatism angle of orientation pre-OK in comparison with 24 months post-OK (all P0.05). DISCUSSION: Short-term and long-term OK lens wear induces significant changes in corneal aberrations that are not significantly correlated with changes in axial elongation after 2-years.
Procedimiento de reconstrucción de la topografía corneal a partir de datos altímetros o de curvatura
Resumo:
Procedimiento de reconstrucción de la topografía corneal a partir de datos altimétricos o de curvatura. La invención consiste en un método de reconstrucción de la superficie de la cara anterior de la córnea, a partir de los datos medidos en un conjunto discreto de puntos por medio de un topógrafo corneal o equipo equivalente. Se trata de un procedimiento que obtiene una expresión analítica de la superficie, combinando un ajuste por polinomios de Zernike o con esfera de mejor ajuste, con una reconstrucción por funciones de base radial gaussianas. Se logra obtener una descripción detallada de la superficie corneal, permitiendo un diagnóstico más fiable de patologías, o la implementación de tratamientos customizados. Este procedimiento es fácilmente implementable en cualquier topógrafo corneal, tomógrafo de coherencia óptica, equipos de lámpara de hendidura y equivalentes, de los existentes en el mercado, como sustituto del método estándar basado en polinomios de Zernike.