984 resultados para Corn cob aggregate
Resumo:
Recent research works have concluded that corn cob may have interesting material properties, in particular, lightness, and thermal and sound insulation abilities. In this research work, corn cob is proposed as an alternative sustainable aggregate for lightweight concrete masonry unit (CMU) manufacturing. The corn cob requires to be granulated previously in order to obtain adequate particle size grade. Subsequently, the particles are wrapped in a cement paste with the purpose of reducing their water abortion and adherent capacities. CMU are current applied in the building of partition walls. The main goal of this research work consists on studying the fire behaviour of partition walls built with CMU of processed corn cob granulate (CMU-PCC).
Resumo:
A research work was performed in order to assess the potential application of processed granulate of corn cob (PCC) as an alternative lightweight aggregate for the manufacturing process of lightweight concrete masonry units (CMU). Therefore, CMU-PCC were prepared in a factory using a typical lightweight concrete mixture for non-structural purposes. Additionally, lightweight concrete masonry units based on a currently applied lightweight aggregate such as expanded clay (CMU-EC) were also manufactured. An experimental work allowed achieving a set of results that suggest that the proposed building product presents interesting material properties within the masonry wall context. Therefore, this unit is promising for both interior and exterior applications. This conclusion is even more relevant considering that corn cob is an agricultural waste product.
Resumo:
In recent years there has been a growing interest in developing news solutions for more ecologic and efficient construction, including natural, renewable and local materials, thus contributing in the search for more efficient, economic and environmentally friendly construction. Several authors have assessed the possibility of using various agricultural sub products or wastes, as part of the effort of the scientific community to find alternative and more ecologic construction materials. Corn cob is an agricultural waste from a very important worldwide crop. Natural glues are made from natural materials, non-mineral, that can be used as such or after some modifications to achieve the behaviour and performance required. Two examples of these natural glues are casein and wheat flour-based glues that were used in the present study. Boards with different compositions were manufactured, having as variables the type of glue, the dimension of the corn cob particles and the features of the pressing process. The tests boards were characterized with physical and mechanical tests, such as thermal conductivity (λ) with a ISOMET 2104 and 60 mm diameter contact probe, density (ρ) based on EN 1602:2013, surface hardness (SH) with a PCE Shore A durometer, surface resistance (SR) with a PROCEQ PT pendular sclerometer, bending behaviour (σ) based on EN 12089:2013, compression behaviour (σ10) based on EN 826:2013 and resilience (R) based on EN 1094-1:2008, with a Zwick Rowell bending equipment with 2 kN and 50 kN load cells (Fig. 1), dynamic modulus of elasticity (Ed) with a Zeus Resonance Meter equipment (Fig. 5) based on NP EN 14146:2006 and water vapour permeability (δ) based on EN 12086:2013. The various boards produced were characterized according to the tests and the ones with the best results were C8_c8 (casein glue, grain size 2,38-4,76 mm, cold pressing for 8 hours), C8_c4 (casein glue, grain size 2,38-4,76 mm, cold pressing for 4 hours), F8_h0.5 (wheat flour glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours), FEV8_h0.5 (wheat flour, egg white and vinegar glue, grain size 2,38-4,76 mm, hot pressing for 0,5 hours) and FEVH68_c4 (wheat flour, egg white, vinegar and 6 g of sodium hydroxide glue, grain size 2,38-4,76 mm, cold pressing for 4 hours). Taking into account the various boards produced and respective test results the type of glue and the pressure and pressing time are very important factors which strongly influence the final product. The results obtained confirmed the initial hypotheses that these boards have potential as a thermal and, eventually, acoustic insulation material, to use as coating or intermediate layer on walls, floors or false ceilings. This type of board has a high mechanical resistance when compared with traditional insulating materials.The integrity of these boards seems to be maintained even in higher humidity environments. However, due to biological susceptibility and sensitivity to water, they would be more adequate for application in dry interior conditions.
Resumo:
Removal of hydrocarbons from aqueous effluents using biosorbents was investigated. The effluent was simulated by a dispersion of gasoline (simple hydrocarbons) in water. Corn-cob, wood powder, coconut mesocarp and sugar-cane bagasse were used as adsorbents and their performance verified by means of batch experiments performed in an agitated vessel. The influence of input variables such as hydrocarbon concentration, mass of biomass and agitation level on the adsorbents' capacity was studied by means of factorial design. The results indicated that, among the materials studied, coconut mesocarp and sugar-cane bagasse can be considered promising biomasses for treating aqueous effluents contaminated by hydrocarbons.
Resumo:
The management of composting may influence the characteristics of the produced compounds. The experiment used three frequencies of plowing, combined with the conditions: with and without coverage of the composting patio, with and without the use of commercial inoculant, resulting in 12 furrows, installed on the Experimental Center of Agricultural Engineering (NEEA), of the STATE UNIVERSITY OF WEST PARANÁ (UNIOESTE), Campus of Cascavel city - state of Paraná (PR), in Brazil. The waste and quantities used in kg were: corn cob (7.5); hatchery residue (5); floater sludge (31); ash (1); wheat cleaning residue (120); wheat pre-cleaning residue (120); corn peel (7.5); solid fraction of wash trucks used to transport chickens (2); solid fraction of pig manure (1) and coal (5), totaling 300kg of natural matter. The aim of this study was to evaluate the influence of plowings, patio coverage and inoculation in losses of N, P, K, Ca, Mg, Na, Cu, Zn, Mn, Fe. The furrows plowed three times a week in the first month showed significant higher losses of N (p<0.05). The coverage of the composting patio influenced significantly the losses of N, K, Mg and Na (p<0.05). The produced compounds had a high agronomic value in relation to macro and micronutrients. It is recommended the use of patio coverage and plowing twice a week in the first month and once a week in the subsequent months for a compound with higher concentrations of nutrients.
Resumo:
The corn cob is an agricultural by-product still little used, this in part due to the low knowledge of the biotechnological potential of their molecules. Xylan from corn cobs (XSM) is a polysaccharide present in greater quantity in the structure of plant and its biotechnology potential is little known. This study aimed to the extraction, chemical characterization and evaluation of biological activities of xylan from corn cobs. To this end, corncobs were cleaned, cut, dried and crushed, resulting in flour. This was subjected to a methodology that combines the use of alkaline conditions with waves of ultrasound. After methanol precipitation, centrifugation and drying was obtained a yield of 40% (g/g flour). Chemical analysis indicated a high percentage of polysaccharides in the sample (60%) and low contamination by protein (0.4%) and phenolic compounds (> 0.01%). Analysis of monosaccharide composition indicated the presence of xylose:glucose:arabinose:galactose:mannose:glucuronic acid in a molar ratio 50:20:15:10:2.5:2.5. The presence of xylan in the sample was confirmed by nuclear magnetic resonance (¹H and ¹³C) and infrared spectroscopy (IR). Tests were conducted to evaluate the antioxidant potential of XSM. This showed a total antioxidant capacity of 48.45 EAA/g sample. However, did not show scavenging activity of superoxide and hydroxyl radical and also reducing power. But, showing a high capacity chelating iron ions with 70% with about 2 mg/mL. The ability to XSM to influence cell proliferation in culture was also evaluated. This polymer did not influence the proliferation of normal fibroblast cells (3T3), however, decreased the rate of proliferation of tumor cells (HeLa) in a dose-dependent, reaching an inhibition of about 50% with a concentration around 2 mg/mL. Analyzing proteins related to cell death, by immunoblotting, XSM increases the amount of Bax, Bcl-2 decrease, increase cytochrome c and AIF, and reduce pro-caspase-3, indicating the induction of cell death induced apoptosis dependent and independent of caspase. XSM did not show anticoagulant activity in the PT test. However, the test of activated partial thromboplastin time (aPTT), XSM increased clotting time at about 5 times with 600 μg of sample compared with the negative control. The presence of sulfate on the XSM was discarded by agarose gel electrophoresis and IR. After carboxyl-reduction of XSM the anticoagulant activity decreased dramatically. The data of this study demonstrate that XSM has potential as antioxidant, antiproliferative and anticoagulant compound. Future studies to characterize these activities of XSM will help to increase knowledge about this molecule extracted from corn and allow their use in functional foods, pharmaceuticals and chemical industries.
Resumo:
An Aspergillus giganteus strain was isolated as an excellent producer of xylanase associated with low levels of cellulase. Optimal xylanase production was obtained in liquid VOGEL medium containing xylan as carbon source, pH 6.5 to 7.0, at 25degreesC and. under shaking at 120 rpm during 84h. Among the several carbon sources tested, higher xylanase production was verified in xylan, xylose, sugar-cane bagasse, wheat bran and corn cob cultures, respectively. Optimal conditions for activity determination were 50degreesC and pH 6.0. The xylanolytic complex of A. giganteus showed low thermal stability with T-50 of 2 h, 13 min and I min when it was incubated at 40, 50 and 60degreesC, respectively, and high stability from pH 4.5 to 10.5, with the best interval between 7.0 to 7.5. This broad range of stability in alkali pH indicates a potential applicability in some industrial processes, which require such condition. Xylanolytic activity of A. giganteus was totally inhibited by Hg+2, Cu+2 and SDS at 10 mm. The analysis of the products from the oat spelts xylan hydrolysis through thin-layer chromatography indicated endoxylanase activity, lack of debranching enzymes and P-xylosidase activity in assay conditions.
Resumo:
The thermophilic fungus Thermoascus aurantiacus 179-5 and the mesophilic Aureobasidium pullulans ER-16 were cultivated in corn-cob by solid state fermentation for P-glucosidase production. After fermentation both enzymes were purified. The beta-glucosidases produced by the strains A. pullulans and T aurantiacus were most active at pH 4.0-4.5 and 4.5, with apparent optimum temperatures at 80 and 75 degrees C, respectively. Surprisingly, the enzyme produced by the mesophilic A. pullulans was stable over a wider range of pH (4.5-9.5 against 4.5-6.5) and more thermostable (98% after 1 h at 75 degrees C against 98% after 1 h at 70 degrees C) than the enzyme from the thermophilic T. aurantiacus. The t((1/2)) at 80 degrees C were 90 and 30 min for A. pullulans and T. aurantiacus, respectively. beta-Glucosidase thermoinactivation followed first-order kinetics and the energies of denaturation were 414 and 537 kJ mol(-1) for T. aurantiacus and A. pullulans, respectively. The result showed that beta-glucosidase obtained from the mesophilic A. pullulans is more stable than that obtained from the thermophilic T. aurantiacus. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
This experiment was carried out in the Microbiology Laboratory of UNESP-Jaboticabal, to evaluate the different species of microorganisms in high-moisture corn grain silage. The treatments were five percentages of corn cob in the silage (0, 5, 10, 15 and 20% DM) and four sampling periods after the opening of the silos (0, 2, 4 and 6 days), using a factorial arrangement in randomized block design with three replications. The growth of Lactobacillus was higher (P<0.01) in the silage prepared only with grains in relation to the other treatments. The presence of Clostridium differed (P<0.01) among the treatments, with values ranging from 1.30 and 3.32 log CFU/g of silage. It was concluded that the population of Lactobacillus was satisfactory to obtain a good fermentation of the silages, and the presence of corn cob facilitated the development of Clostridium and also of yeast and Enterobacteriaceae after the silos were opened.
Resumo:
This work had the objective of evaluating the effects of different percentages of corn (Zea mays L.) cob on the quality of the silage of high-moisture corn grains. The following treatments were studied: percentages of corn cob in the silage (0, 5, 10, 15 and 20%); period of sampling after opening the silos (zero, two, four and six days). The factorial arrangement 5 × 4 was studied according to a completely randomized block design with three replications. The variables studied were not affected by the sampling period. The buffering capacity and the pH were not affected by the cob, while the percent soluble carbohydrates and amoniacal nitrogen increasing until 1.2 and 1.89 unit percent, respectively. Increasing the amount of corn cobs reduced the contents of DM (from 63.9% to 58.6%), CP (from 10.0% to 7.3%), EE (from 4.87% to 3.92%) and the values of DMIVD (from 90.5% to 79.1%) in the silages and increasing the contents of acid detergente fiber (ADF) (from 3.3% to 12.9%) and neutral detergente fiber (NDF) (from 15.16% to 26.1%). The values of brute energy (BE) were not affected (P>0.01) by the cob corn in the silage.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The use of new substrates, which do not lead to extinction of important species such as xaxim, has gained special attention to the cultivation of ornamental and exotic plants. This study aimed to evaluate the potential of using corn cob as substrate for growing orchids. Thus, we used plants of Laelia pulcherrima grown in pine bark (control) and corn cob. We evaluated the development and physicochemical characteristics. We assessed also the benefit of fertilization for the development of this species in both substrates. The corn cob had higher nutrient contents and higher water retention capacity than pine bark, as well as pH and porosity more appropriate. Plant development of L. pulcherrima on the cob was comparable to that obtained with pine and the use of fertilizer promoted the best growing, especially when the substrate used was the cob. Thus, it is recommend to use the same for the cultivation of this orchid.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Thermochemical characterisation of agricultural biomass wastes from West African region has been carried out and their potential use as feedstock in thermochemical conversion processes determined. Proximate, ultimate, structural compositions, calorific values, thermogravimetry (TGA) and derivative thermogravimetry (DTG) analyses were carried out on corn straw and cobs, rice straw and husks, cocoa pod, jatropha curcas and moringa olifiera seed cakes, parinari polyandra fruit shell and sugarcane bagasse. Moringa olifiera seed cakes and cocoa pods were found to contain the highest moisture contents. Rice straw was found to contain a high ash content of 45.76. wt.%. The level of nitrogen and sulphur in all the samples were very low. Rice husk was found to have the highest lignin contents while corn cob low lignin contents indicate a potential feedstock source for quality bio-oil production using thermochemical process. © 2013.