980 resultados para Corn - seed
Resumo:
A supersweet sweet corn hybrid, Pacific H5, was planted at weekly intervals (P-1 to P-5) in spring in South-Eastern Queensland. All plantings were harvested at the same time resulting in immature seed for the last planting (P-5). The seed was handled by three methods: manual harvest and processing (M-1), manual harvest and mechanical processing (M-2) and mechanical harvest and processing (M-3), and later graded into three sizes (small, medium and large). After eight months storage at 12-14degreesC, seed was maintained at 30degreesC with bimonthly monitoring of germination for fourteen months and seed damage at the end of this period. Seed quality was greatest for M-1 and was reduced by mechanical processing but not by mechanical harvesting. Large and medium seed had higher germination due to greater storage reserves but also more seed damage during mechanical processing. Immature seed from premature harvest (P-5) had poor quality especially when processed mechanically and reinforced the need for harvested seed to be physiologically mature.
Resumo:
It was compared the performance of the metering mechanism of corn seeds (Zea mays) in direct seeding in an area of 200 ha, a property in Piraí do Sul, State of Paraná - PR, in Brazil. It was seeded 4 maize hybrids, 50 ha of each, with seeds of different sieves. The experiment was conducted in a randomized block design (RBD), with 3 treatments and 9 repetitions for each corn hybrid. The treatments were the pneumatic seed of metering mechanisms, horizontal perforated disc with and without ramp®. The plots were 40 m² and were distributed at the early, middle and late sowing. The variables analyzed in each corn hybrid were initial population, faulty spacing, multiple spacing, acceptable spacing, and yield components. As there were no significant differences in the variables, it was concluded that the quality of seeding with different systems of distribution was similar in the different sieves of distributed corn seeds.
Resumo:
The main objective of seed coating technology using polymers is to improve the physical, physiological and sanitary characteristics of seed performance. The objectives of the present study were to determine: the plantability of corn seeds treated with insecticide, fungicide and graphite, covered with a film coating; the dust retention on treated corn seeds; and the leaching of applied products on corn seeds covered by a film coating. Seed plantability was determined by counting the skips and double seeds; dust was determined by using fiberglass paper in mg.100 g-1 of seeds; and the leaching was determined by collecting the material leached in a 10 cm layer of sand after irrigation. The following conclusions were made: seeds covered with film coating effectively reduce skips and double seeds; film coating effectively reduces the formation of dust from the seeds; film coated seeds minimize the leaching of the insecticide applied in seed treatment; and there are differences in effectiveness related to film coating type and dosage.
Resumo:
A simple method was developed for treating corn seeds with oxamyl. It involved soaking the seeds to ensure oxamyl uptake, centrifugation to draw off excess solution, and drying under a stream of air to prevent the formation of fungus. The seeds were found to have an even distribution of oxamyl. Seeds remained fungus-free even 12 months after treatment. The highest nonphytotoxic treatment level was obtained by using a 4.00 mg/mL oxamyl solution. Extraction methods for the determination of oxamyl (methyl-N'N'-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate), its oxime (methyl-N',N'-dimethyl-N-hydroxy-1-thiooxamimidate), and DMCF (N,N-dimethyl-1-cyanoformanade) in seed" root, and soil were developed. Seeds were processed by homogenizing, then shaking in methanol. Significantly more oxamyl was extracted from hydrated seeds as opposed to dry seeds. Soils were extracted by tumbling in methanol; recoveries range~ from 86 - 87% for oxamyl. Root was extracted to 93% efficiency for oxamyl by homogenizing the tissue in methanol. NucharAttaclay column cleanup afforded suitable extracts for analysis by RP-HPLC on a C18 column and UV detection at 254 nm. In the degradation study, oxamyl was found to dissipate from the seed down into the soil. It was also detected in the root. Oxime was detected in both the seed and soil, but not in the root. DMCF was detected in small amounts only in the seed.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
A supersweet sweet corn hybrid, Pacific H5, was grown under field conditions in South-East Queensland to study the effects of harvest time and drying conditions on seed quality. Cobs were harvested at different times to obtain seed with two moisture percentage ranges (20-30% and 40-50%) and dried to 12% moisture under different combinations of drying temperatures (30 degrees C, 40 degrees C and 50 degrees C) and air velocities (1.25 m/s, 2.75 m/s and 4.30 m/s). Dried seed was stored at 30 degrees C with bimonthly monitoring of seed quality for 12 months. For standard as well as cold test germinations, statistical analysis yielded significant main effects for temperature, air velocity and harvest moisture content and significant interactions for drying temperature by harvest moisture and drying temperature by air velocity. Germination at the beginning of storage was unaffected by drying temperatures up to 40 degrees C regardless of harvest moisture but was lower at 50 degrees C for higher moisture. However, germination at the end of the storage period of 12 months was greatest for seed harvested at higher moisture and dried at temperatures up to 40 degrees C. Germination was not affected by air velocity for drying temperatures up to 40 degrees C but at 50 degrees C it generally decreased with increase in air velocity. To slow down seed deterioration during storage, it is recommended that sweet corn seed should be harvested at a higher moisture range (40-50%) and dried at 40 degrees C and 4.30 m/s air velocity. The drying temperature can be raised to 50 degrees C for seed harvested at a low moisture range (20-30%) provided the air velocity is kept low (1.25 m/s).
Resumo:
The objective of this work was to evaluate the effects of temperature (10, 20, 30, 20/10 and 30/10ºC) and period of storage on electrical conductivity (EC) in four seed lots of corn (Zea mays L.), as well as the mineral composition of the soaking solution. EC test determines indirectly the integrity of seed membrane systems, and is used for the assessment of seed vigor, because this test detects the seed deterioration process since its early phase. The research comprised determinations of water content, germination, accelerated aging (AA), cold (CT) and EC vigor tests, and determinations of Ca2+, Mg2+ and K+ release to the solution, after seed soaking of four corn seed lots. The evaluations were performed each four months during a period of 16 months. For statistical analysis, a completely randomized split plot design was used with eight replications. Except for seed lots stored at 10ºC, all vigor evaluations revealed a decline in vigor, but AA and CT showed more sensitiveness to declines of seed physiological quality than EC. Potassium was the main leached ion regardless of the storage temperature.
Resumo:
Northern corn leaf blight, caused by Exserohilum turcicum(Et), is one of the major corn diseases which can reduce grain yield and quality. The aim of this study was to determine the mycelial sensitivity of ten Etisolates, five from Argentina and five from Brazil, to six fungicides (carbendazim, captan, fludioxinil, metalaxyl, iprodione and thiram) used in seed treatment. The inhibitory concentration (IC50) was determined by using seven concentrations of the fungicides supplemented to the agar medium. The mycelial colony diameter was measured with a digital caliper. Experimental design was completely randomized with four replicates. Data on the percent mycelial growth inhibition were analyzed by logarithmic regression and the IC50 was calculated. The fungicide iprodione was the most potent, with IC50 < 0.01 mg/L, followed by fludioxonil, IC50 0.31 mg/L, and thiram, 1.37 mg/L. Carbendazim, metalaxyl and captan were classified as non-fungitoxic, showing IC50 > 50 mg/L for all isolates. Although iprodione is the most potent fungicide, it is not used for corn seed treatment. The IC50s obtained in this study can be used as baseline for future monitoring studies of Etsensitivity to fungicides.
Resumo:
The aim of this study was to model light interception and distribution in the mixed canopy of Common cocklebur (Xanthium stramarium) with corn. An experiment was conducted in factorial arrangement on the basis of randomized complete blocks design with three replications in Gonabad in 2006-2007 and 2007-2008 seasons. The factors used in this experiment include corn density of 7.5, 8.5 and 9.5 plants per meter of row and density of Common cocklebur of zero, 2, 4, 6 and 8 plants per meter of row. INTERCOM model was used through replacing parabolic function with triangular function of leaf area density. Vertical distribution of the species' leaf area showed that corn has concentrated the most leaf area in layer of 80 to 100 cm while Common cocklebur has concentrated in 35-50 cm of canopy height. Model sensitivity analysis showed that leaf area index, species' height, height where maximum leaf area is seen (hm), and extinction coefficient have influence on light interception rate of any species. In both species, the distribution density of leaf area at the canopy length fit a triangular function, and the height in which maximum leaf area was observed was changed by change in density. There was a correlation between percentage of the radiation absorbed by the weed and percentage of corn seed yield loss (r² = 0.89). Ideal type of corn was determined until the stage of tasseling in competition with weed. This determination indicates that the corn needs more height and leaf area, as well as less extinction coefficient to successfully fight against the weed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Corn is Nebraska's most important crop. Of the nearly 19 million acres under cultivation in the state, over 10 million acres or more than 50 percent is normally planted to corn. This is three times the acreage of wheat, four times that of oats, and ten times that of barley. The 10-year average acre yield of corn for this state is 25.8 bushels compared with 26.9 bushels for the entire United States. Nebraska, with an average annual crop of approximately 258 million bushels, usually ranks third among all states in the total production of corn, being exceeded by Iowa and Illinois. This 1933 extension circular discusses the importance of corn, seed, varieties of corn, freezing injury, testing seed corn, hybrid corn, soil fertility and rotation, cultural practices, harvesting and storing corn, power machinery in relation to costs in corn production, corn diseases and insects, and utilization of corn.
Resumo:
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL), for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins constituting the vast majority of species in any proteome, as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis. Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification / detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL capture is at least twice that of control, untreated sample.
Resumo:
The mechanism of action and properties of a solid-phase ligand library made of hexapeptides (combinatorial peptide ligand libraries or CPLL, for capturing the "hidden proteome", i.e. the low- and very low-abundance proteins Constituting the vast majority of species in any proteome. as applied to plant tissues, are reviewed here. Plant tissues are notoriously recalcitrant to protein extraction and to proteome analysis, Firstly, rigid plant cell walls need to be mechanically disrupted to release the cell content and, in addition to their poor protein yield, plant tissues are rich in proteases and oxidative enzymes, contain phenolic Compounds, starches, oils, pigments and secondary metabolites that massively contaminate protein extracts. In addition, complex matrices of polysaccharides, including large amount of anionic pectins, are present. All these species compete with the binding of proteins to the CPLL beads, impeding proper capture and identification I detection of low-abundance species. When properly pre-treated, plant tissue extracts are amenable to capture by the CPLL beads revealing thus many new species among them low-abundance proteins. Examples are given on the treatment of leaf proteins, of corn seed extracts and of exudate proteins (latex from Hevea brasiliensis). In all cases, the detection of unique gene products via CPLL Capture is at least twice that of control, untreated sample. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
O tema central de pesquisa deste estudo é avaliar se a adoção de regras de proteção à novas cultivares de plantas e à modificação genética, impactou as estratégias adotadas pelas empresas nos segmentos de sementes de soja e milho do Brasil, quando comparadas às dos Estados Unidos. Os resultados dessa dupla comparação demonstraram que, no caso do milho híbrido, por contar com uma proteção natural, o estímulo aos investimentos privados ocorreram independentemente da existência de regras formais de apropriação. Essas regras foram essenciais para favorecer tais investimentos na soja, como se nota na transformação da indústria no Brasil após meados da década de 1990. Além disso, embora a modificação genética tenha ocorrido tanto em eventos com características agronômicas, os quais promovem como consequência o aumento de produtividade, quanto para a modificação qualitativa do produto, a demanda do produtor agrícola concentrou-se pelo primeiro tipo, cujo retorno é diretamente apropriado pelo agricultor. Verifica-se ainda, que a complexidade do processo de pesquisa e desenvolvimento e a necessidade de investimentos com altas características locacionais justificam o alto nível de consolidação global dos segmentos de sementes com os de biotecnologia e agroquímicos. Nesses segmentos, a possibilidade de apropriação sobre os direitos da inovação, mostra-se fundamental para motivar os investimentos privados.