994 resultados para Cork oak forest


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the several applications of in vitro tissue culture techniques, the conservation of plant germplasm is one of the most widely used. The cork oak is one of the principal tree species in the Western Mediterranean región. Within this área, the Balearic Islands are considered to be a glacial refuge, and therefore a reservoir of genetic resources. A singular tree has been found in the small Minorca Island population. The haplotype of this tree is of Tyrrhenian origin, showing a past link between Minorca and Sardinia. Moreover, this tree do not bear a deletion within an ITS from ribosimic nuclear DNA, which is fairly common in many populations of this species, and indicates that ir may be the descendant of a very ancient population. This tree is currently in a precarious condition, and it has not produced acorns in the last years. Hence there is a clear need of vegetative propagation to conserve this genotype. We have previously developed methods to clone adult cork oak tres by somatic embryogenesis, and therefore the aim of the present work was to clone this singular tree. There braches from the corwn were collected in November 2004, and methods previously described were carried out. By February 2005 somatic embryogenesis was obtained from leaves of the tree with percentages on induction ranging from 17 to 54% depending on the branch, which may show a novel source of variation that requires further study. Spontaneously matured somatic embryos germinated at 46% in average, and the first somatic seedlings from the Alfavaret's cork oak tree were obtained. Therefore, this study shows one of the most relevant applications of somatic embryogenesis: the plant regeneration of valuable genotypes for the in situ and ex situ conservation of forest genetic resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doutoramento em Engenharia Florestal e dos Recursos Naturais - Instituto Superior de Agronomia - UL

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tese de doutoramento (co-tutela), Biologia (Biologia da Conservação), Faculdade de Ciências da Universidade de Lisboa, University of East Anglia, School of Environmental Sciences, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Results lead to the conclusion that the effect of health status on traumatic phellogen formation and activity is clear but not uniform. Further studies are necessary for a deeper understanding of the effect of stress situations on pore formation and characteristics

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction of forest floor ground cover and litter layers by prescribed fires may alter the morphology (field and micro) and physical properties of surface horizons. This study determined long-term (35 yr) changes in surface horizon bulk density, organic matter concentration and content, and morphology in response to periodic (5 yr) and annual (1 yr) prescribed fires. Soils were fine-silty, siliceous, thermic Glossic Fragiuldults, supporting mixed oak vegetation in middle Tennessee. Upper mineral soils (0- to 2-cm and 0- to 7.6-cm depths) were sampled and detailed field descriptions made. Periodic and control plots had a thin layer of Oi, Oe, and Oa horizons 5 yr after the 1993 burn, whereas on annual burn plots a 1- to 2-cm charred layer was present. Significant reductions in organic matter concentration and mean thickness of the A horizon were found from burning (A horizons thicknesses were 6.4, 4.6, and 2.9 cm in control, periodic, and annual plots, respectively). Periodic burns did not significantly alter the organic matter and bulk density of the upper 7.6 cm of mineral soil; however, annual burns did result in significantly higher bulk densities (1.01, 1.07, and 1.29 Mg m-3 in control, periodic, and annual plots, respectively) and lower organic matter concentrations and contents. Microscopic investigations confirmed that compaction was increased from annual burning. Thin sections also revealed that the granular structure of the A horizons in control and periodic plots resulted from bioterbation of macro and mesofauna, fungi, and roots. Long-term annual burning greatly affected surface soil properties, whereas periodic burning on a 5-yr cycle had only limited effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study analyses the influence of vegetation structure (i.e. leaf area index and canopy cover) and seasonal background changes on moderate-resolution imaging spectrometer (MODIS)-simulated reflectance data in open woodland. Approximately monthly spectral reflectance and transmittance field measurements (May 2011 to October 2013) of cork oak tree leaves (Quercus suber) and of the herbaceous understorey were recorded in the region of Ribatejo, Portugal. The geometric-optical and radiative transfer (GORT) model was used to simulate MODIS response (red, near-infrared) and to calculate vegetation indices, investigating their response to changes in the structure of the overstorey vegetation and to seasonal changes in the understorey using scenarios corresponding to contrasting phenological status (dry season vs. wet season). The performance of normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), and enhanced vegetation index (EVI) is discussed. Results showed that SAVI and EVI were very sensitive to the emergence of background vegetation in the wet season compared to NDVI and that shading effects lead to an opposing trend in the vegetation indices. The information provided by this research can be useful to improve our understanding of the temporal dynamic of vegetation, monitored by vegetation indices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract Protocols have been established to clone adult cork oak trees by somatic embryogenesis using semisolid medium. However, for economically viable mass propagation, embryogenic cultures in liquid medium need to be developed. In this study, suspension cultures were initiated from embryo clusters obtained by secondary embryogenesis on a gelled medium lacking plant growth regulators. After 6 days of culture, these embryo clusters generated high cell density suspensions that also contained small organized structures (embryos and embryogenic clumps). As the culture duration increased, tissue necrosis and fewer embryogenic structures were observed and the establishment of suspension cultures failed. An alternative method was found adequate for initiation of embryogenic suspensions: embryo clusters from gelled medium were briefly shaken in liquid medium and detached cells and embryogenic masses of 41?800 lm were used as inoculum. Maintenance of embryogenic suspensions was achieved using a low-density inoculum (43 mg l-1) by subculturing four embryogenic clumps of 0.8?1.2 mm per 70 ml of medium. Proliferation ability was maintained for almost 1 year through ten consecutive subcultures. The initiation and maintenance protocols first developed for a single genotype were effective when tested on 11 cork oak genotypes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carbon distribution in the stem of 2-year-old cork oak plants was studied by 14CO2 pulse labeling in late spring in order to trace the allocation of photoassimilates to tissue and biochemical stem components of cork oak. The fate of 14C photoassimilated carbon was followed during two periods: the first 72 h (short-term study) and the first 52 weeks (long-term study) after the 14CO2 photosynthetic assimilation. The results showed that 14C allocation to stem tissues was dependent on the time passed since photoassimilation and on the season of the year. In the first 3 h all 14C was found in the polar extractives. After 3 h, it started to be allocated to other stem fractions. In 1 day, 14C was allocated mostly to vascular cambium and, to a lesser extent, to primary phloem; no presence of 14C was recorded for the periderm. However, translocation of 14C to phellem was observed from 1 week after 14CO2 pulse labeling. The phellogen was not completely active in its entire circumference at labeling, unlike the vascular cambium; this was the tissue that accumulated most photoassimilated 14C at the earliest sampling. The fraction of leaf-assimilated 14C that was used by the stem peaked at 57% 1 week after 14CO2 plant exposure. The time lag between C photoassimilation and suberin accumulation was ∼8 h, but the most active period for suberin accumulation was between 3 and 7 days. Suberin, which represented only 1.77% of the stem weight, acted as a highly effective sink for the carbon photoassimilated in late spring since suberin specific radioactivity was much higher than for any other stem component as early as only 1 week after 14C plant labeling. This trend was maintained throughout the whole experiment. The examination of microautoradiographs taken over 1 year provided a new method for quantifying xylem growth. Using this approach it was found that there was more secondary xylem growth in late spring than in other times of the year, because the calculated average cell division time was much shorter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Porous ceramic materials of SiC were synthesized from carbon matrices obtained via pyrolysis of natural cork as precursor. We propose a method for the fabrication of complex-shaped porous ceramic hardware consisting of separate parts prepared from natural cork. It is demonstrated that the thickness of the carbon-matrix walls can be increased through their impregnation with Bakelite phenolic glue solution followed by pyrolysis. This decreases the material's porosity and can be used as a way to modify its mechanical and thermal characteristics. Both the carbon matrices (resulted from the pyrolysis step) and the resultant SiC ceramics are shown to be pseudomorphous to the structure of initial cork. Depending on the synthesis temperature, 3C-SiC, 6H-SiC, or a mixture of these polytypes, could be obtained. By varying the mass ratio of initial carbon and silicon components, stoichiometric SiC or SiC:C:Si, SiC:C, and SiC:Si ceramics could be produced. The structure, as well as chemical and phase composition of the prepared materials were studied by means of Raman spectroscopy and scanning electron microscopy.