997 resultados para Coriolis effect


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the mean, bipolar active regions are oriented nearly toroidally, according to Hale's polarity law, with a latitude-dependent tilt known as Joy's Law. The tilt angles of individual active regions deviate from this mean behavior and change over time. It has been found that on average the change is toward the mean angle at a rate characteristic of 4.37 days (Howard, 1996). We show that this orientational relaxation is consistent with the standard model of flux tube emergence from a deep dynamo layer. Under this scenario Joy's law results from the Coriolis effect on the rising flux tube (D'Silva and Choudhuri, 1993), and departures from it result from turbulent buffeting of the tubes (Longcope and Fisher, 1996). We show that relaxation toward Joy's angle occurs because the turbulent perturbations relax on shorter time scales than the perturbations from the Coriolis force. The turbulent perturbations relax more rapidly because they are localized to the topmost portion of the convection zone while the Coriolis perturbations are more widely distributed. If a fully-developed active region remains connected to the strong toroidal magnetic field at the base of the convection zone, its tilt will eventually disappear, leaving it aligned perfectly toroidally. On the other hand, if the flux becomes disconnected from the toroidal field the bipole will assume a tilt indicative of the location of disconnection. We compare models which are connected and disconnected from the toroidal field. Only those disconnected at points very deep in the convection zone a-re consistent with observed time scale of orientational relaxation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The origin of hydrodynamic turbulence in rotating shear flows is investigated, with particular emphasis on the flows whose angular velocity decreases but whose specific angular momentum increases with the increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain the observed data. Such a mismatch between the linear theory and the observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and then the corresponding turbulence therein is ruled out. This work explores the effect of stochastic noise on such hydrodynamic flows. We essentially concentrate on a small section of such a flow, which is nothing but a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disc. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities and hence large energy dissipations of perturbation, which presumably generate the instability. A range of angular velocity (Omega) profiles of the background flow, starting from that of a constant specific angular momentum (lambda = Omega r(2); r being the radial coordinate) to a constant circular velocity (v(phi) = Omega r), is explored. However, all the background angular velocities exhibit identical growth and roughness exponents of their perturbations, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand the origin of instability and turbulence in three-dimensional Rayleigh stable rotating shear flows by introducing additive noise to the underlying linearized governing equations. This has important implications to resolve the turbulence problem in astrophysical hydrodynamic flows such as accretion discs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this dissertation, we investigated two types of traveling ionospheric disturbances (TIDs)/gravity waves (GWs) triggered separately by auroral energy input during super geomagnetic storms and solar terminator (ST) under quiet geomagnetic conditions (kp<3+) using TEC measurements from the global network of GPS receivers. Research into the generation and propagation of TIDs/GWs during storms greatly enhance our understandings on the evolution processes of energy transportation from the high-latitude’s magnetosphere to the low-latitude ionosphere and the conjugated effect of TIDs propagation between the northern and southern hemispheres. Our results revealed that the conjugacy of propagation direction between the northern and southern hemispheres was subject to the influence of Coriolis force. We also figure out the evolution processes of ionospheric disturbances at the global scale. These are important topics that had not been well addressed previously. In addition, we also obtained thee wave structures of medium scale TIDs excited by the solar terminator (ST) moving over the northern America and physical mechanisms involved. Our observations confirm that the ST is a stable and repetitive source of ionospheric wave disturbances and the evidence of solar terminator generated disturbances has been demonstrated experimentally via the GPS TEC measurement. The main researches and results of this dissertation are as follows. First, the global traveling ionospheric disturbances (TIDs) during the drastic magnetic storms of October 29–31, 2003 were analyzed using the Global Position System (GPS) total electron content (TEC) data observed in the Asian-Australian, European and North American sectors. We collected the most comprehensive set of the TEC data from more than 900 GPS stations on the International GNSS Services (IGS) website and introduce here a strategy that combines polynomial fitting and multi-channel maximum entropy spectral analysis to obtain TID parameters. Moreover, in collaboration with my thesis advisor, I have developed an imaging technique of 2-dimensional map of TIDs structures to obtain spatial and temporal maps of large scale traveling ionospheric disturbances (LSTIDs). The clear structures of TEC perturbations map during the passage of TIDs were displayed. The results of our study are summarized as follows: (1) Large-scale TIDs (LSTIDs) and medium-scale TIDs (MSTIDs) were detected in all three sectors after the sudden commencement (SC) of the magnetic storm, and their features showed longitudinal and latitudinal dependences. The duration of TIDs was longer at higher latitudes than at middle latitudes, with a maximum of about 16 h. The TEC variation amplitude of LSTIDs was larger in the North American sector than in the two other sectors. At the lower latitudes, the ionospheric perturbations were more complicated, and their duration and amplitude were relatively longer and larger. (2) The periods and phase speeds of TIDs were different in these three sectors. In Europe, the TIDs propagated southward; in North America and Asia, the TIDs propagated southwestward; in the near-equator region, the disturbances propagated with the azimuth (the angle of the propagation direction of the LSTIDs measured clockwise from due north with 0°) of 210° showing the influence of Coriolis force; in the Southern Hemisphere, the LSTIDs propagated conjugatedly northwestward. Both the southwestward and northeastward propagating LSTIDs are found in the equatorial region. These results mean that the Coriolis effect cannot be ignored for the wave propagation of LSTIDs and that the propagation direction is correlated with the polar magnetic activity. (3) The day (day of year: 301) before the SC (sudden commencement) of magnetic storm, we observed a sudden TEC skip disturbances (±10 TECU). It should be a response for the high flux of proton during the solar flare event, but not the magnetic storms. Next, the most comprehensive and dense GPS network’s data from North-America region were used in this paper to analyze the medium scale traveling ionospheric disturbances (MSTIDs) which were generated by the moving solar terminator during the quiet days in 2005. We applied the multi-channel maximum entropy spectral analysis to calculated TID parameters, and found that the occurrence of ST-MSTIDs depends on the seasonal variations. The results of our study are summarized as follows: (1) MSTIDs stimulated by the moving ST (ST-MSTIDs) are detected at mid-latitudes after the passage of the solar terminator with the life time of 2~3 hours and the variation amplitude of 0.2~0.8 TECU. Spectral analysis indicated that the horizontal wavelength, average period, horizontal phase velocity of the MSTIDs are around 300±150 km,150±80 m/s and 25±15 min, respectively. In addition, ST-MSTIDs have wave fronts elongating the moving ST direction and almost parallel to ST. (2) The statistical results demonstrate that the dusk MSTIDs stimulated by ST is more obvious than the dawn MSTIDs in summer. On the contrary, the more-pronounced dawn MSTIDs occurs in winter. (3) Further analysis indicates that the seasonal variations of ST-MSTIDs occurrence frequency are most probably related to the seasonal differences of the variations of EUV flux in the ionosphere region and recombination process during sunrise and sunset period at mid-latitudes. Statistical study of occurrence characteristics of TIDs using the GPS network in North-American and European during solar maximum, In conclusion, statistical studies of the propagation characteristics of TIDs, which excited by the two common origins including geomagnetic storms and moving solar terminator, were involved with global GPS TEC databasein this thesis. We employed the multichannel maximum entropy spectral analysis method to diagnose the characteristics of propagation and evolvement of ionospheric disturbances, also, the characteristics of their regional distribution and climatological variations were revealed by the statistic analysis. The results of these studies can improve our knowledge about the energy transfer in the solar-terrestrial system and the coupling process between upper and lower atmosphere (thermosphere-ionosphere-mesosphere). On the other hand, our results of the investigation on TIDs generated by particular linear origin such as ST are important for developing ionospheric irregularity physics and modeling the transionosphere radio wave propagation. Besides, the GPS TEC representation of the ST-generated ionospheric structure suggests a better possibility for investigating this phenomenon. Subsequently, there are scientific meaning of the result of this dissertation to deeply discuss the energy transfer and coupling in the ionosphere, as well as realistic value to space weather forecast in the ionosphere region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aquí hem aplicat el Princeton Ocean Model als embassaments de Sau i Boadella, situats a Catalunya, Espanya. Les simulacions s'han realitzat a l'estació d'estiu, quan la columna d'aigua està estratificada de forma contínua, i sota un règim de brisa amb velocitats de fins a 4 m/s. Basant-nos en aquestes simulacions hem analitzat el camp d'ones internes i comparat els resultats numèrics amb dades experimentals disponibles. El model reprodueix adequadament tots els modes observats en l'espectre de la velocitat i temperatura mesurades i ajuda a identificar els diferents modes. Les simulacions mostren la importància dels modes rotacionals en el camp d'ones internes dels embassaments estratificats. En el període estudiat, el radi de Rossby per l'embassament de Sau és de l'ordre de 100 m, que és varies vegades més petit que la amplitud de l'àrea lacustre de l'embassament, i el número de Rossby és de l'ordre de 0.1, corroborant la importancia de l'efecte de Coriolis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The sea ice edge presents a region of many feedback processes between the atmosphere, ocean, and sea ice (Maslowski et al.). Here the authors focus on the impact of on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines (Hunt et al.). This sharp change in surface roughness is experienced by the atmosphere and ocean encountering a compacted sea ice edge. This paper presents a study of a dynamic sea ice edge responding to prescribed atmospheric and oceanic jet formation. An idealized analytical model of sea ice drift is developed and compared to a sea ice climate model [the Los Alamos Sea Ice Model (CICE)] run on an idealized domain. The response of the CICE model to jet formation is tested at various resolutions. It is found that the formation of atmospheric jets at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice drift jet in agreement with an observed sea ice drift jet (Johannessen et al.). The increase in ice drift speed is dependent upon the angle between the ice edge and wind and results in up to a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans have been analyzed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Origin of hydrodynamic turbulence in rotating shear flows is investigated. The particular emphasis is on flows whose angular velocities decrease but specific angular momenta increase with increasing radial coordinate. Such flows are Rayleigh stable, but must be turbulent in order to explain observed data. Such a mismatch between the linear theory and observations/experiments is more severe when any hydromagnetic/magnetohydrodynamic instability and the corresponding turbulence therein is ruled out. The present work explores the effect of stochastic noise on such hydrodynamic flows. We focus on a small section of such a flow which is essentially a plane shear flow supplemented by the Coriolis effect. This also mimics a small section of an astrophysical accretion disk. It is found that such stochastically driven flows exhibit large temporal and spatial correlations of perturbation velocities, and hence large energy dissipations, that presumably generate instability. A range of angular velocity profiles (for the steady flow), starting with the constant angular momentum to that of the constant circular velocity are explored. It is shown that the growth and roughness exponents calculated from the contour (envelope) of the perturbed flows are all identical, revealing a unique universality class for the stochastically forced hydrodynamics of rotating shear flows. This work, to the best of our knowledge, is the first attempt to understand origin of instability and turbulence in the three-dimensional Rayleigh stable rotating shear flows by introducing additive stochastic noise to the underlying linearized governing equations. This has important implications in resolving the turbulence problem in astrophysical hydrodynamic flows such as accretion disks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate the evolution of magnetohydrodynamic (or hydromagnetic as coined by Chandrasekhar) perturbations in the presence of stochastic noise in rotating shear flows. The particular emphasis is the flows whose angular velocity decreases but specific angular momentum increases with increasing radial coordinate. Such flows, however, are Rayleigh stable but must be turbulent in order to explain astrophysical observed data and, hence, reveal a mismatch between the linear theory and observations and experiments. The mismatch seems to have been resolved, at least in certain regimes, in the presence of a weak magnetic field, revealing magnetorotational instability. The present work explores the effects of stochastic noise on such magnetohydrodynamic flows, in order to resolve the above mismatch generically for the hot flows. We essentially concentrate on a small section of such a flow which is nothing but a plane shear flow supplemented by the Coriolis effect, mimicking a small section of an astrophysical accretion disk around a compact object. It is found that such stochastically driven flows exhibit large temporal and spatial autocorrelations and cross-correlations of perturbation and, hence, large energy dissipations of perturbation, which generate instability. Interestingly, autocorrelations and cross-correlations appear independent of background angular velocity profiles, which are Rayleigh stable, indicating their universality. This work initiates our attempt to understand the evolution of three-dimensional hydromagnetic perturbations in rotating shear flows in the presence of stochastic noise. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current dynamics in the Strait of Bonifacio (south Corsica) were investigated at a small scale during the STELLAMARE1 multidisciplinary cruise in summer 2012, using in situ measurements and modeling data. The Strait of Bonifacio is a particularly sensitive marine area in which specific conservation measures have been taken to preserve the natural environment and wild species. Good knowledge of the hydrodynamics in this area is essential to optimize the Marine Protected Area's management rules. Therefore, we used a high-resolution model (400 m) based on the MARS3D code to investigate the main flux exchanges and to formulate certain hypotheses about the formation of possible eddy structures. The aim of the present paper is first to synthetize the results obtained by combining Acoustic Doppler Current Profiler data, hydrological parameters, Lagrangian drifter data, and satellite observations such as MODIS OC5 chlorophyll a data or Metop-A AVHRR Sea Surface Temperature (SST) data. These elements are then used to validate the presence of the mesoscale eddies simulated by the model and their recurrence outside the cruise period. To complete the analysis, the response of the 3D hydrodynamical model was evaluated under two opposing wind systems and certain biases were detected. Strong velocities up to 1 m s(-1) were recorded in the east part due to the Venturi effect; a complementary system of vortices governed by Coriolis effect and west wind was observed in the west part, and horizontal stratification in the central part has been identified under typical wind condition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Observational data and a three dimensional numerical model (POM) are used to investigate the Persian Gulf outflow structure and its spreading pathway into the Oman Sea. The model is based on orthogonal curvilinear coordinate system in horizontal and train following coordinate (sigma coordinate) system in vertical. In the simulation, the horizontal diffusivity coefficients are calculated form Smogorinsky diffusivity formula and the eddy vertical diffusivities are obtained from a second turbulence closure model (namely Mellor-Yamada level 2.5 model of turbulence). The modeling area includes the east of the Persian Gulf, the Oman Sea and a part of the north-east of the Indian Ocean. In the model, the horizontal grid spacing was assumed to be about 3.5 km and the number of vertical levels was set to 32. The simulations show that the mean salinity of the PG outflow does not change substantially during the year and is about 39 psu, while its temperature exhibits seasonal variations. These lead to variations in outflow density in a way that is has its maximum density in late winter (March) and its minimum in mid-summer (August). At the entrance to the Oman Sea, the PG outflow turns to the right due to Coriolis Effect and falls down on the continental slope until it gains its equilibrium depth. The highest density of the outflow during March causes it to sink more into the deeper depths in contrast to that of August which the density is the lowest one. Hence, the neutral buoyancy depths of the outflow are about 500 m and 250 m for March and August respectively. Then, the outflow spreads in its equilibrium depths in the Oman Sea in vicinity of western and southern boundaries until it approach the Ras al Hamra Cape where the water depth suddenly begins to increase. Therefore, during March, the outflow that is deeper and wider relative to August, is more affected by the steep slope topography and as a result of vortex stretching mechanism and conservation of potential vorticity it separates from the lateral boundaries and finally forms an anti-cyclonic eddy in the Oman Sea. But during August the outflow moves as before in vicinity of lateral boundaries. In addition, the interaction of the PG outflow with tide in the Strait of Hormuz leads to intermittency in outflow movement into the Oman Sea and it could be the major reason for generations of Peddy (Peddies) in the Oman Sea.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to study the effect of the Coriolis force due to solar rotation on rising magnetic flux, the authors consider a flux ring, azimuthally symmetric around the rotation axis, starting from rest at the bottom of the convection zone, and then follow the trajectory of the flux ring as it rises. If it is assumed that the flux ring remains azimuthally symmetric during its ascent, then the problem can be described essentially in terms of two parameters: the value of the initial magnetic field in the ring when it starts, and the effective drag experienced by it. For field strengths at the bottom of the convection zone of order 10,000 G or less, it is found that the Coriolis force plays a dominant role and flux rings starting from low latitudes at the bottom are deflected and emerge at latitudes significantly poleward of sunspot zones.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Working under the hypothesis that magnetic flux in the sun is generated at the bottom of the convection zone, Choudhuri and Gilman (1987; Astrophys. J. 316, 788) found that a magnetic flux tube symmetric around the rotation axis, when released at the bottom of the convection zone, gets deflected by the Coriolis force and tends to move parallel to the rotation axis as it rises in the convection zone. As a result, all the flux emerges at rather high latitudes and the flux observed at the typical sunspot latitudes remains unexplained. Choudhuri (1989; Solar Physics, in press) finds that non-axisymmetric perturbations too cannot subdue the Coriolis force. In this paper, we no longer treat the convection zone to be passive as in the previous papers, but we consider the role of turbulence in the convection zone in inhibiting the Coriolis force. The interaction of the flux tubes with the turbulence is treated in a phenomenological way as follows: (1) Large scale turbulence on the scale of giant cells can physically drag the tubes outwards, thus pulling the flux towards lower latitudes by dominating over the Coriolis force. (2) Small scale turbulence of the size of the tubes can exchange angular momentum with the tube, thus suppressing the growth of the Coriolis force and making the tubes emerge at lower latitudes. Numerical simulations show that the giant cells can drag the tubes and make them emerge at lower latitufes only if the velocities within the giant cells are unrealistically large of if the radii of the flux tubes are as small as 10 km. However, small scale turbulence can successfully suppress the growth of the Coriolis force if the tubes have radii smaller than about 300 km which may not be unreasonable. Such flux tubes can then emerge at low latitudes where sunspots are seen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Three-dimensional and time-dependent numerical simulations are performed For melt convection in horizontal Bridgman crystal growth tinder high gravity conditions by means of a centrifuge. The numerical results show that Coriolis Force can cause a stabilizing effect on the fluctuations of the melt flow under a specific relation direction and relation rates of the centrifuge as reported in previous experiments (Ma et al., Materials Processing in High Gravity, Plenum Press, New York, 1994, p. 61). The present simulation provides details of the now features associated with the effect of the Coriolis force. There are also some differences between the present three-dimensional and former two-dimensional numerical solutions particularly in the prediction of the critical conditions and flow patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Mössbauer technique has been used to study the nuclear hyperfine interactions and lifetimes in W182 (2+ state) and W183 (3/2- and 5/2- states) with the following results: g(5/2-)/g(2+) = 1.40 ± 0.04; g(3/2- = -0.07 ± 0.07; Q(5/2-)/Q(2+) = 0.94 ± 0.04; T1/2(3/2-) = 0.184 ± 0.005 nsec; T1/2(5/2-) >̰ 0.7 nsec. These quantities are discussed in terms of a rotation-particle interaction in W183 due to Coriolis coupling. From the measured quantities and additional information on γ-ray transition intensities magnetic single-particle matrix elements are derived. It is inferred from these that the two effective g-factors, resulting from the Nilsson-model calculation of the single-particle matrix elements for the spin operators ŝz and ŝ+, are not equal, consistent with a proposal of Bochnacki and Ogaza.

The internal magnetic fields at the tungsten nucleus were determined for substitutional solid solutions of tungsten in iron, cobalt, and nickel. With g(2+) = 0.24 the results are: |Heff(W-Fe)| = 715 ± 10 kG; |Heff(W-Co)| = 360 ± 10 kG; |Heff(W-Ni)| = 90 ± 25 kG. The electric field gradients at the tungsten nucleus were determined for WS2 and WO3. With Q(2+) = -1.81b the results are: for WS2, eq = -(1.86 ± 0.05) 1018 V/cm2; for WO3, eq = (1.54 ± 0.04) 1018 V/cm2 and ƞ = 0.63 ± 0.02.

The 5/2- state of Pt195 has also been studied with the Mössbauer technique, and the g-factor of this state has been determined to be -0.41 ± 0.03. The following magnetic fields at the Pt nucleus were found: in an Fe lattice, 1.19 ± 0.04 MG; in a Co lattice, 0.86 ± 0.03 MG; and in a Ni lattice, 0.36 ± 0.04 MG. Isomeric shifts have been detected in a number of compounds and alloys and have been interpreted to imply that the mean square radius of the Pt195 nucleus in the first-excited state is smaller than in the ground state.