941 resultados para Core Peptide Technology
Resumo:
This study demonstrates the effectiveness of a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens by use of lipid core peptide (LCP) technology. An LCP formulation incorporating two different protective epitopes of the surface antiphagocytic M protein of group A streptococci (GAS)-the causative agents of rheumatic fever and subsequent rheumatic heart disease-was tested in a murine parenteral immunization and GAS challenge model. Mice were immunized with the LCP-GAS formulation, which contains an M protein amino-terminal type-specific peptide sequence (8830) in combination with a conserved non-host-cross-reactive carboxy-terminal C-region peptide sequence (J8) of the M protein. Our data demonstrated immunogenicity of the LCP-8830-J8 formulation in B10.BR mice when coadministered in complete Freund's adjuvant and in the absence of a conventional adjuvant. In both cases, immunization led to induction of high-titer GAS peptide-specific serum immunoglobulin G antibody responses and induction of highly opsonic antibodies that did not cross-react with human heart tissue proteins. Moreover, mice were completely protected from GAS infection when immunized with LCP-8830-J8 in the presence or absence of a conventional adjuvant. Mice were not protected, however, following immunization with an LCP formulation containing a control peptide from a Schistosoma sp. These data support the potential of LCP technology in the development of novel self-adjuvanting multi-antigen component vaccines and point to the potential application of this system in the development of human vaccines against infectious diseases.
Resumo:
Traditional vaccines consisting of whole attenuated micro-organisms. or microbial components administered with adjuvant, have been demonstrated as one of the most cost-effective and successful public health interventions. Their use in large scale immunisation programs has lead to the eradication of smallpox, reduced morbidity and mortality from many once common diseases, and reduced strain on health services. However, problems associated with these vaccines including risk of infection. adverse effects, and the requirement for refrigerated transport and storage have led to the investigation of alternative vaccine technologies. Peptide vaccines, consisting of either whole proteins or individual peptide epitopes, have attracted much interest, as they may be synthesised to high purity and induce highly specific immune responses. However, problems including difficulties stimulating long lasting immunity. and population MHC diversity necessitating multiepitopic vaccines and/or HLA tissue typing of patients complicate their development. Furthermore, toxic adjuvants are necessary to render them immunogenic. and as such non-toxic human-compatible adjuvants need to be developed. Lipidation has been demonstrated as a human compatible adjuvant for peptide vaccines. The lipid-core-peptide (LCP) system. incorporating lipid adjuvant, carrier, and peptide epitopes, exhibits promise as a lipid-based peptide vaccine adjuvant. The studies reviewed herein investigate the use of the LCP system for developing vaccines to protect against group A streptococcal (GAS) infection. The studies demonstrate that LCP-based GAS vaccines are capable of inducing high-titres of antigen specific IgG antibodies. Furthermore. mice immunised with an LCP-based GAS vaccine were protected against challenge with 8830 strain GAS.
Resumo:
Background & objectives: To develop a broad strain coverage GAS vaccine, several strategies have been investigated which included multi-epitope approaches as well as targeting the M protein conserved C-region. These approaches, however, have relied on the use of adjuvants that are toxic for human application. The development of safe and effective adjuvants for human use is a key issue in the development of effective vaccines. In this study, we investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting GAS vaccine delivery approach. Methods: An LCP-GAS construct was synthesised incorporating multiple copies of a protective peptide epitope (J8) from the conserved carboxy terminal C-repeat region of the M protein. B10.BR mice were immunized parenterally with the LCP-J8 construct, with or without conventional adjuvant, prior to the assessment of immunogenicity and the induction of serum opsonic antibodies. Results: Our data demonstrated immunogenicity of LCP-J8 when coadministered in complete Freund's adjuvant (CFA), or administered in the absence of conventional adjuvant. In both cases, immunization led to the induction of high-titre J8 peptide-specific serum IgG antibody responses, and the induction of heterologous opsonic antibodies that did not cross-react with human heart tissue proteins. Interpretation & conclusion: These data indicated the potential of a novel self-adjuvanting LCP vaccine delivery system incorporating a synthetic GAS M protein C-region peptide immunogen in the induction of broadly protective immune responses, and pointed to the potential application of this system in human vaccine development against infectious diseases.
Resumo:
Group A streptococcus (GAS) is responsible for causing many clinical complications including the relatively benign streptococcal pharyngitis and impetigo. However. if left untreated. these conditions may lead to more severe diseases such as rheumatic fever (RF) and rheumatic heart disease (RHD). These diseases exhibit high morbidity and mortality, Particularly in developing countries and in indigenous populations of affluent countries. Only ever occur following GAS infection, a vaccine offers Promise for their Prevention. As stich, we have investigated the Use of the lipid-core peptide (LCP) system for the development of multi-valent Prophylactic GAS vaccines. The current study has investigated the capacity of this system to adjuvant LIP to four different GAS peptide epitopes. Presented are the synthesis and immunological assessment of tetra-valent and tri-valent GAS LCP systems. We demonstrated their capacity to elicit systemic IgG antibody responses in B10.BR mice to all GAS peptide epitopes. The data also showed that the LCP systems Were self-adjuvanting. These findings are particularly encouraging for the development of multi-valent LCP-based GAS vaccines.
Resumo:
We have developed a highly pure, self-adjuvanting, triepitopic Group A Streptococcal vaccine based on the lipid core peptide system, a vaccine delivery system incorporating lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity. Vaccine synthesis was performed using native chemical ligation. Due to the attachment of a highly lipophilic adjuvant, addition of 1% (w/v) sodium dodecyl sulfate was necessary to enhance peptide solubility in order to enable ligation. The vaccine was synthesized in three steps to yield a highly pure product (97.7% purity) with an excellent overall yield. Subcutaneous immunization of B10. BR (H-2(k)) mice with the synthesized vaccine, with or without the addition of complete Freund's adjuvant, elicited high serum IgG antibody titers against each of the incorporated peptide epitopes.
Resumo:
Traditional vaccines consisting of whole attenuated microorganisms, killed microorganisms, or microbial components, administered with an adjuvant (e.g. alum), have been proved to be extremely successful. However, to develop new vaccines, or to improve upon current vaccines, new vaccine development techniques are required. Peptide vaccines offer the capacity to administer only the minimal microbial components necessary to elicit appropriate immune responses, minimizing the risk of vaccination associated adverse effects, and focusing the immune response toward important antigens. Peptide vaccines, however, are generally poorly immunogenic, necessitating administration with powerful, and potentially toxic adjuvants. The attachment of lipids to peptide antigens has been demonstrated as a potentially safe method for adjuvanting peptide epitopes. The lipid core peptide (LCP) system, which incorporates a lipidic adjuvant, carrier, and peptide epitopes into a single molecular entity, has been demonstrated to boost immunogenicity of attached peptide epitopes without the need for additional adjuvants. The synthesis of LCP systems normally yields a product that cannot be purified to homogeneity. The current study describes the development of methods for the synthesis of highly pure LCP analogs using native chemical ligation. Because of the highly lipophilic nature of the LCP lipid adjuvant, difficulties (e.g. poor solubility) were experienced with the ligation reactions. The addition of organic solvents to the ligation buffer solubilized lipidic species, but did not result in successful ligation reactions. In comparison, the addition of approximately 1% (w/v) sodium dodecyl sulfate (SDS) proved successful, enabling the synthesis of two highly pure, tri-epitopic Streptococcus pyogenes LCP analogs. Subcutaneous immunization of B10.BR (H-2(k)) mice with one of these vaccines, without the addition of any adjuvant, elicited high levels of systemic IgG antibodies against each of the incorporated peptides. Copyright (c) 2006 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
Gastro-oesophageal cancer is associated with a high incidence of cachexia. Proteolysis-inducing factor (PIF) has been identified as a possible cachectic factor and studies suggest that PIF is produced exclusively by tumour cells. We investigated PIF core peptide (PIF-CP) mRNA expression in tumour and benign tissue from patients with gastro-oesophageal cancer and in gastro-oesophageal biopsies for healthy volunteers. Tumour tissue and adjacent benign tissue were collected from patients with gastric and oesophageal cancer (n = 46) and from benign tissue only in healthy controls (n = 11). Expression of PIF-CP mRNA was quantified by real-time PCR. Clinical and pathological information along with nutritional status was collected prospectively. In the cancer patients, PIF-CP mRNA was detected in 27 (59%) tumour samples and 31 (67%) adjacent benign tissue samples. Four (36%) gastro-oesophageal biopsies from healthy controls also expressed PIF-CP mRNA. Expression was higher in tumour tissue (P = 0.031) and benign tissue (P = 0.022) from cancer patients compared with healthy controls. In the cancer patients, tumour and adjacent benign tissue PIF-CP mRNA concentrations were correlated with each other (P<0.0001, r = 0.73) but did not correlate with weight loss or prognosis. Although PIF-CP mRNA expression is upregulated in both tumour and adjacent normal tissue in gastro-oesophageal malignancy, expression does not relate to prognosis or cachexia. Post-translational modification of PIF may be a key step in determining the biological role of PIF in the patient with advanced cancer and cachexia. © 2006 Cancer Research.
Resumo:
Using native chemical ligation, we synthesized a group A streptococcal. (GAS) vaccine that contained three different GAS M protein peptide epitopes in a chemically well-characterized construct in high purity. Two of the peptide epitopes represented variable amino terminal serotype determinants, and the third represented a carboxyl terminal conserved region determinant of the GAS M protein. We also synthesized a lipid core peptide (LCP) construct containing the same three peptides. Upon immunization of mice, the non-LCP construct only elicited antibody responses to all three epitopes with the use of adjuvant. The LCP construct, however, elicited excellent antibody responses to all three epitopes without the need for any additional adjuvant or carrier. We have synthesized the LCP synthetic vaccine system with good reproducibility.
Resumo:
A problem facing the use of subunit peptide and protein vaccines is their inability to stimulate protective immune responses. Many different approaches have been utilized to overcome this inefficient immune activation. The approach we have taken is to modify the vaccine antigen so that it now has adjuvant properties. To do this, multiple copies of minimal CD8 T cell epitopes were attached to a poly lysine lipid core. These constructs are known as lipid-core-peptides (LCP). The research presented here examines the adjuvant activity of LCP. Using mouse models, we were able to show that LCP were indeed able to activate antigen-presenting cells in vitro and to activate cytotoxic T-cell responses in vivo. More importantly, LCP were able to stimulate the development of a protective antitumour immune response.
Resumo:
We have investigated the lipid polylysine core peptide (LCP) system as a self-adjuvanting group A streptococcal (GAS) vaccine delivery approach. LCP constructs were synthesised incorporating peptides from the M protein conserved carboxy terminal C-repeat region, the amino terminal type-specific region and from both of these regions. Immunisation with the constructs without adjuvant led to the induction of peptide-specific serum IgG antibody responses, heterologous opsonic antibodies, and complete protection from GAS infection. These data indicate that protective immunity to GAS infection can be evoked using the self-adjuvanting LCP system, and point to the potential application of this system in human mucosal GAS vaccine development. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Purpose. The purpose of this study was to investigate the immunogenicity of liposomes containing mannosylated lipid core peptide (manLCP) constructs, both in vitro and in vivo, with or without the addition of the immune stimulating adjuvant Quil A. Methods. Mouse bone marrow dendritic cells (BMDC) were cultured with liposome formulations for 48 h, and the resulting level of BMDC activation was determined by flow cytometry. BMDC pulsed with liposome formulations were incubated with 5,6-carboxyfluoroscein diacetate succinimidyl ester-labeled T cells for 72 h and the resulting T cell proliferation was determined by flow cytometry. To investigate the immunogenicity of formulations in vivo, groups of C57Bl/6J mice were immunized by subcutaneous injection, and the resulting antigen-specific cytotoxic and protective immune responses toward tumor challenge evaluated. Results. Despite being unable to demonstrate the activation of BMDC, BMDC pulsed with liposomes containing manLCP constructs were able to stimulate the proliferation of naive T cells in vitro. However, in vivo only liposomes containing both manLCP and Quil A were able to stimulate a strong antigen-specific cytotoxic immune response. Liposomes containing manLCP and Quil A within the same particle were able to protect against the growth of tumor cells to a similar level as if the antigen was administered in alum with CD4 help. Conclusion. ManLCPs administered in liposomes are able to stimulate strong cytotoxic and protective immune responses if Quil A is also incorporated as an adjuvant.