974 resultados para Corals


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Physiological responses to environmental stress are increasingly well studied in scleractinian corals. This work reports a new stress-related skeletal structure we term clypeotheca. Clypeotheca was observed in several livecollected common reef-building coral genera and a two to three kya subfossil specimen from Heron Reef, Great Barrier Reef and consists of an epitheca-like skeletal wall that seals over the surface of parts of the corallum in areas of stress or damage. It appears to form from a coordinated process wherein neighboring polyps and adjoining coenosarc seal themselves off from the surrounding environment as they contract and die. Clypeotheca forms from inward skeletal centripetal growth at the edges of corallites and by the merging of flange-like outgrowths that surround individual spines over the surface of the coenosteum. Microstructurally, the merged flanges are similar to upsidedown dissepiments and true epitheca. Clypeotheca is interpreted primarily as a response to stress that may help protect the colony from invasion of unhealthy tissues by parasites or disease by retracting tissues in areas that have become unhealthy for the polyps. Identification of skeletal responses of corals to environmental stress may enable the frequency of certain types of environmental stress to be documented in past environments. Such data may be important for understanding the nature of reef dynamics through intervals of climate change and for monitoring the effects of possible anthropogenic stress in modern coral reef habitats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Outbreaks of the coral-killing seastar Acanthaster planci are intense disturbances that can decimate coral reefs. These events consist of the emergence of large swarms of the predatory seastar that feed on reef-building corals, often leading to widespread devastation of coral populations. While cyclic occurrences of such outbreaks are reported from many tropical reefs throughout the Indo-Pacific, their causes are hotly debated, and the spatio-temporal dynamics of the outbreaks and impacts to reef communities remain unclear. Based on observations of a recent event around the island of Moorea, French Polynesia, we show that Acanthaster outbreaks are methodic, slow-paced, and diffusive biological disturbances. Acanthaster outbreaks on insular reef systems like Moorea's appear to originate from restricted areas confined to the ocean-exposed base of reefs. Elevated Acanthaster densities then progressively spread to adjacent and shallower locations by migrations of seastars in aggregative waves that eventually affect the entire reef system. The directional migration across reefs appears to be a search for prey as reef portions affected by dense seastar aggregations are rapidly depleted of living corals and subsequently left behind. Coral decline on impacted reefs occurs by the sequential consumption of species in the order of Acanthaster feeding preferences. Acanthaster outbreaks thus result in predictable alteration of the coral community structure. The outbreak we report here is among the most intense and devastating ever reported. Using a hierarchical, multi-scale approach, we also show how sessile benthic communities and resident coral-feeding fish assemblages were subsequently affected by the decline of corals. By elucidating the processes involved in an Acanthaster outbreak, our study contributes to comprehending this widespread disturbance and should thus benefit targeted management actions for coral reef ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In June 2011 a large phytoplankton bloom resulted in a catastrophic mortality event that affected a large coastal embayment in the Solomon Islands. This consisted of an area in excess of 20 km2 of reef and soft sandy habitats in Marovo Lagoon, the largest double barrier lagoon in the world. This embayment is home to over 1200 people leading largely subsistence lifestyles depending on the impacted reefs for majority of their protein needs. A toxic diatom (Psuedo-nitzchia spp.) and toxic dinoflagellate (Pyrodinium bahamense var. compressum) reached concentrations of millions of cells per litre. The senescent phytoplankton bloom led to complete de-oxygenation of the water column that reportedly caused substantial mortality of marine animal life in the immediate area within a rapid timeframe (24 h). Groups affected included holothurians, crabs and reef and pelagic fish species. Dolphins, reptiles and birds were also found dead within the area, indicating algal toxin accumulation in the food chain. Deep reefs and sediments, whilst initially unaffected, have now been blanketed in large cyanobacterial mats which have negatively impacted live coral cover especially within the deep reef zone (> 6 m depth). Reef recovery within the deep zone has been extremely slow and may indicate an alternative state for the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is increasingly apparent that sea-level data (e.g. microfossil transfer functions, dated coral microatolls and direct observations from satellite and tidal gauges) vary temporally and spatially at regional to local scales, thus limiting our ability to model future sea-level rise for many regions. Understanding sealevel response at ‘far-field’ locations at regional scales is fundamental for formulating more relevant sea-level rise susceptibility models within these regions under future global change projections. Fossil corals and reefs in particular are valuable tools for reconstructing past sea levels and possible environmental phase shifts beyond the temporal constraints of instrumental records. This study used abundant surface geochronological data based on in situ subfossil corals and precise elevation surveys to determine previous sea level in Moreton Bay, eastern Australia, a far-field site. A total of 64 U-Th dates show that relative sea level was at least 1.1 m above modern lowest astronomical tide (LAT) from at least ˜6600 cal. yr BP. Furthermore, a rapid synchronous demise in coral reef growth occurred in Moreton Bay ˜5800 cal. yr BP, coinciding with reported reef hiatus periods in other areas around the Indo-Pacific region. Evaluating past reef growth patterns and phases allows for a better interpretation of anthropogenic forcing versus natural environmental/climatic cycles that effect reef formation and demise at all scales and may allow better prediction of reef response to future global change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the natural variability of the Earth's climate system and accurately identifying potential anthropogenic influences requires long term, geographically distributed records of key climate indicators, such as temperature and precipitation that extend prior to the last 400. years of the Holocene. Reef corals provide an excellent source of high resolution climate records, and importantly represent the tropical marine environment where palaeoclimate data are urgently required. Recent decades have seen significant improvement in our understanding of coral biomineralisation, the associated uptake of geochemical proxies and methods of identifying and understanding the effects of both early and late, post depositional diagenetic alteration. These processes all have significant implications for interpreting geochemical proxies relevant to palaeoclimatic reconstructions. This paper reviews the current 'state of the art' in terms of coral based palaeoclimate reconstructions and highlights a key remaining problem. The majority of coral based palaeoclimate research has been derived from massive colonies of Porites. However, massive Porites are not globally abundant and may not provide material of a particular age of interest in those regions where they are present. Therefore, there is great potential for alternate coral genera to act as complimentary climate archives. While it remains critical to consider five key factors - vital effects, differential growth morphologies, geochemical heterogeneity in the skeletal ultrastructure, transfer equation selection and diagenetic screening of skeletal material - in order to allow the highest level of accuracy in coral palaeoclimate reconstructions, it is also important to develop alternate taxa for palaeoclimate studies in regions where Porites colonies are absent or rare. Currently as many as nine genera other than Porites have proven at least limited utility in palaeothermometry, most of which are found in the Atlantic/Caribbean region where massive Porites do not exist. Even branching taxa such as Acropora have significant potential to preserve environmental archives. Increasing this capability will greatly expand the number of potential geochemical archives available for longer term temporal records of palaeoclimate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reef-building corals are an example of plastic photosynthetic organisms that occupy environments of high spatiotemporal variations in incident irradiance. Many phototrophs use a range of photoacclimatory mechanisms to optimize light levels reaching the photosynthetic units within the cells. In this study, we set out to determine whether phenotypic plasticity in branching corals across light habitats optimizes potential light utilization and photosynthesis. In order to do this, we mapped incident light levels across coral surfaces in branching corals and measured the photosynthetic capacity across various within-colony surfaces. Based on the field data and modelled frequency distribution of within-colony surface light levels, our results show that branching corals are substantially self-shaded at both 5 and 18 m, and the modal light level for the within-colony surface is 50 mu mol photons m(-2) s(-1). Light profiles across different locations showed that the lowest attenuation at both depths was found on the inner surface of the outermost branches, while the most self-shading surface was on the bottom side of these branches. In contrast, vertically extended branches in the central part of the colony showed no differences between the sides of branches. The photosynthetic activity at these coral surfaces confirmed that the outermost branches had the greatest change in sun- and shade-adapted surfaces; the inner surfaces had a 50 % greater relative maximum electron transport rate compared to the outer side of the outermost branches. This was further confirmed by sensitivity analysis, showing that branch position was the most influential parameter in estimating whole-colony relative electron transport rate (rETR). As a whole, shallow colonies have double the photosynthetic capacity compared to deep colonies. In terms of phenotypic plasticity potentially optimizing photosynthetic capacity, we found that at 18 m, the present coral colony morphology increased the whole-colony rETR, while at 5 m, the colony morphology decreased potential light utilization and photosynthetic output. This result of potential energy acquisition being underutilized in shallow, highly lit waters due to the shallow type morphology present may represent a trade-off between optimizing light capture and reducing light damage, as this type morphology can perhaps decrease long-term costs of and effect of photoinhibition. This may be an important strategy as opposed to adopting a type morphology, which results in an overall higher energetic acquisition. Conversely, it could also be that maximizing light utilization and potential photosynthetic output is more important in low-light habitats for Acropora humilis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report for the first time the ingestion of microplastics by scleractinian corals, and the presence of microplastics in coral reef waters adjacent to inshore reefs on Australia’s Great Barrier Reef (GRE, 18°31′S 146°23′E). Analysis of samples from sub-surface plankton tows conducted in close proximity to inshore reefs on the central GBR revealed microplastics, similar to those used in marine paints and fishing floats, were present in low concentrations at all water sampling locations. Experimental feeding trials revealed that corals mistake microplastics for prey and can consume up to ~50 μg plastic cm−2 h−1, rates similar to their consumption of plankton and Artemia nauplii in experimental feeding assays. Ingested microplastics were found wrapped in mesenterial tissue within the coral gut cavity, suggesting that ingestion of high concentrations of microplastic debris could potentially impair the health of corals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two major anthropogenic activities that disturb coral reefs are fishing and tourism, even though coral reefs are important for both fishing and tourism. Already more than 60 per cent of all reefs worldwide are endangered. The use of explosives and poison by small-scale fishers, to supply the market for live fish for aquariums and for human consumption, cause irreversible damages to reefs. Similarly, rapid and unmanaged coastal development for marine tourism negatively affects coral reefs in many ways. Though marine parks and marine protected areas are being promoted all over the world, developing countries need assistance in establishing and assessing such reserves and for taking appropriate actions for rehabilitation of reefs. These can be accomplished through partnership projects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fishery for deepwater precious corals in the Hawaiian Islands has experienced an on-and-off history for almost 40 years. In spite of this, research, driven primarily by the precious coral jewelry industry, remains active. In this paper, the results of deepwater surveys in 2000 and 2001 are reported. In summary, a new bed on the summit of Cross Seamount is described and revised estimates of MSY’s for pink coral, Corallium secundum; red coral, Corallium regale; and gold coral, Ger ardia sp., in the two known beds off Makapuu, Oahu, and Keahole Point, Hawaii, in the main Hawaiian Islands, are presented. The population dynamics of each species is described, as well as their ecological limits on Hawaii’s deep reefs, island shelves, and seamounts. The local supply of precious coral in the main Hawaiian Islands is sufficient to support the local industry, but cost/ benefits of selective harvest requirements and weather constraints limit profitability of the fish

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: The rising temperature of the world’s oceans has become a major threat to coral reefs globally as the severity and frequency of mass coral bleaching and mortality events increase. In 2005, high ocean temperatures in the tropical Atlantic and Caribbean resulted in the most severe bleaching event ever recorded in the basin. Methodology/Principal Findings: Satellite-based tools provided warnings for coral reef managers and scientists, guiding both the timing and location of researchers’ field observations as anomalously warm conditions developed and spread across the greater Caribbean region from June to October 2005. Field surveys of bleaching and mortality exceeded prior efforts in detail and extent, and provided a new standard for documenting the effects of bleaching and for testing nowcast and forecast products. Collaborators from 22 countries undertook the most comprehensive documentation of basin-scale bleaching to date and found that over 80% of corals bleached and over 40% died at many sites. The most severe bleaching coincided with waters nearest a western Atlantic warm pool that was centered off the northern end of the Lesser Antilles. Conclusions/Significance: Thermal stress during the 2005 event exceeded any observed from the Caribbean in the prior 20 years, and regionally-averaged temperatures were the warmest in over 150 years. Comparison of satellite data against field surveys demonstrated a significant predictive relationship between accumulated heat stress (measured using NOAA Coral Reef Watch’s Degree Heating Weeks) and bleaching intensity. This severe, widespread bleaching and mortality will undoubtedly have long-term consequences for reef ecosystems and suggests a troubled future for tropical marine ecosystems under a warming climate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral reefs are damaged by natural disturbances and local and global anthropogenic stresses. As stresses intensify, so do debates about whether reefs will recover after significant damage. True headway in this debate requires documented temporal trajectories for coral assemblages subjected to various combinations of stresses; therefore, we report relevant changes in coral assemblages at Little Cayman Island. Between 1999 and 2012, spatiotemporal patterns in cover, densities of juveniles and size structure of assemblages were documented inside and outside marine protected areas using transects, quadrats and measurements of maximum diameters. Over five years, bleaching and disease caused live cover to decrease from 26% to 14%, with full recovery seven years later. Juvenile densities varied, reaching a maximum in 2010. Both patterns were consistent within and outside protected areas. In addition, dominant coral species persisted within and outside protected areas although their size frequency distributions varied temporally and spatially. The health of the coral assemblage and the similarity of responses across levels of protection suggested that negligible anthropogenic disturbance at the local scale was a key factor underlying the observed resilience.