978 resultados para Coral bleaching


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral bleaching and subsequent mortality represent a major threat to the future health and productivity of coral reefs. However a lack of reliable data on occurrence, severity and other characteristics of bleaching events hampers research on the causes and consequences of this important phenomenon. This article describes a global protocol for monitoring coral bleaching events, which addresses this problem and can be used by people with different levels of expertise and resources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral bleaching is a significant contributor to the worldwide degradation of coral reefs and is indicative of the termination of symbiosis between the coral host and its symbiotic algae (dinoflagellate; Symbiodinium sp. complex), usually by expulsion or xenophagy (symbiophagy) of its dinoflagellates. Herein, we provide evidence that during the earliest stages of environmentally induced bleaching, heat stress and light stress generate distinctly different pathomorphological changes in the chloroplasts, while a combined heat- and light-stress exposure induces both pathomorphologies; suggesting that these stressors act on the dinoflagellate by different mechanisms. Within the first 48 hours of a heat stress (32°C) under low-light conditions, heat stress induced decomposition of thylakoid structures before observation of extensive oxidative damage; thus it is the disorganization of the thylakoids that creates the conditions allowing photo-oxidative-stress. Conversely, during the first 48 hours of a light stress (2007 µmoles m−2 s−1 PAR) at 25°C, condensation or fusion of multiple thylakoid lamellae occurred coincidently with levels of oxidative damage products, implying that photo-oxidative stress causes the structural membrane damage within the chloroplasts. Exposure to combined heat- and light-stresses induced both pathomorphologies, confirming that these stressors acted on the dinoflagellate via different mechanisms. Within 72 hours of exposure to heat and/or light stresses, homeostatic processes (e.g., heat-shock protein and anti-oxidant enzyme response) were evident in the remaining intact dinoflagellates, regardless of the initiating stressor. Understanding the sequence of events during bleaching when triggered by different environmental stressors is important for predicting both severity and consequences of coral bleaching

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since 2001, biannual fish and habitat monitoring has been conducted for the shallow (> 30 m), colonized pavement and gorgonian dominated Buck Island Reef National Monument (BIRNM) St. Croix, USVI and adjacent waters. during October, 2005, widespread coral bleaching was observed within the ∼50 square-kilometer study area that was preceded by 10 wks of higher than average water temperatures (28.9–30.1 °C). Random transects (100 square meters) were conducted on linear reefs, patch reefs, bedrock, pavement, and scattered coral/rock habitats during October 2005, and April and October 2006, and species specific bleaching patterns were documented. During October 2005 approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching. Coral cover for Montastraea annularis and species of the genus Agaricia were the most affected, while other species exhibited variability in their susceptibility to bleaching. Bleaching was evident at all depths (1.5–28 m), was negatively correlated with depth, and positively correlated with habitat complexity. Bleaching was less prevalent at all depths and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006. Four species and one genus did not exhibit signs of bleaching throughout the study period (Dendrogyra cylindrus, Eusmilia fastigata, Mussa angulosa, Mycetophyllia aliciae, Scolymia spp.).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limited information currently exists on the recovery periods of bleached corals as well as the spatial extent, causative factors, and the overall impact of bleaching on coral reef ecosystems. During October, 2005, widespread coral bleaching was observed within Buck Island Reef National Monument (BUIS) St. Croix, USVI. The bleaching event was preceded by 10 weeks of higher than average water temperatures (28.9-30.1°C). Random transects (100 square meters) over hard bottom habitats (N=94) revealed that approximately 51% of live coral cover was bleached. Nineteen of 23 coral species within 16 genera and two hydrocoral species exhibited signs of bleaching; species-specific bleaching patterns were variable throughout the study area. Coral cover for Montastraea annularisand species of the genus Agariciawere the most affected, while other species exhibited variability to bleaching. Although a weak but significant negative relationship (r2=0.10, P=0.0220) was observed, bleaching was evident at all depths (1.5-28 m). Bleaching was spatially autocorrelated (P=0.001) and hot-spot analysis identified a cluster of high bleaching stations northeast of Buck Island. Bleaching was significantly reduced within all depth zones and habitat types upon subsequent monitoring during April (15%) and October (3%) 2006.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coral reef communities are in a state of change throughout their geographical range. Factors contributing to this change include bleaching (the loss of algal symbionts), storm damage, disease, and increasing abundance of macroalgae. An additional factor for Caribbean reefs is the aftereffects of the epizootic that reduced the abundance of the herbivorous sea urchin, Diadema antillarum. Although coral reef communities have undergone phase shifts, there are few studies that document the details of such transitions. We report the results of a 40-month study that documents changes in a Caribbean reef community affected by bleaching, hurricane damage, and an increasing abundance of macroalgae. The study site was in a relatively pristine area of the reef surrounding the island of San Salvador in the Bahamas. Ten transects were sampled every 3–9 months from November 1994 to February 1998. During this period, the corals experienced a massive bleaching event resulting in a significant decline in coral abundance. Algae, especially macroalgae, increased in abundance until they effectively dominated the substrate. The direct impact of Hurricane Lili in October 1996 did not alter the developing community structure and may have facilitated increasing algal abundance. The results of this study document the rapid transition of this reef community from one in which corals and algae were codominant to a community dominated by macroalgae. The relatively brief time period required for this transition illustrates the dynamic nature of reef communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-06

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Explants of the hard coral Seriatopora hystrix were exposed to sublethal concentrations of the herbicide diuron DCMU (N'-(3,4-dichlorophenyl,-N,N-dimethylurea)) and the heavy metal copper. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques were used to assess the effects on the photosynthetic efficiency of the algal symbionts in the tissue (in Symbio), and chlorophyll fluorescence and counts of symbiotic algae (normalised to surface area) were used to assess the extent of coral bleaching. At 30 mug DCMU l(-1), there was a reduction in both the maximum effective quantum yield (DeltaF/F-m') and maximum potential quantum yield (F-v/F-m) of the algal symbionts in symbio. Corals subsequently lost their algal symbionts and discoloured (bleached), especially on their upper sunlight-exposed surfaces. At the same DCMU concentration but under low light (5% of growth irradiance), there was a marked reduction in DeltaF/F-m' but only a slight reduction in F-v/F-m and slight loss of algae. Loss of algal symbionts was also noted after a 7 d exposure to concentrations as low as 10 mug DCMU l(-1) under normal growth irradiance, and after 14 d exposure to 10 mug DCMU l(-1) under reduced irradiance. Collectively the results indicate that DCMU-induced bleaching is caused by a light-dependent photoinactivation of algal symbionts, and that bleaching occurs when F-v/F-n, (measured 2 h after sunset) is reduced to a value of less than or equal to 0.6. Elevated copper concentrations (60 mug Cu l(-1) for 10 h) also induced a rapid bleaching in S. hystrix but without affecting the quantum yield of the algae in symbio. Tests with isolated algae indicated that substantially higher concentrations (300 mug Cu l(-1) for 8 h) were needed to significantly reduce the quantum yield. Thus, copper-induced bleaching occurs without affecting the algal photosynthesis and may be related to effects on the host (animal). It is argued that warm-water bleaching of corals resembles both types of chemically induced bleaching, suggesting the need for an integrated model of coral bleaching involving the effect of temperature on both host (coral) and algal symbionts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photoacclimation of endolithic algae ( of the genus Ostreobium) inhabiting the skeleton of the Mediterranean coral Oculina patagonica during a bleaching event was examined. Pulse amplitude modulated (PAM) chlorophyll fluorescence techniques in situ were used to assess the photosynthetic efficiency of endolithic algae in the coral skeleton and the symbiotic dinoflagellates (zooxanthellae) in the coral tissue. Relative photosynthetic electron transport rates (ETRs) of the endolithic algae under bleached areas of the colony were significantly higher than those of endolithic algae from a healthy section of the colony and those of zooxanthellae isolated from the same section. Endolithic algae under healthy parts of the colony demonstrated an ETRmax of 16.5% that of zooxanthellae from tissue in the same section whereas endolithic algae under bleached sections showed ETRmax values that were 39% of those found for healthy zooxanthellae. The study demonstrates that endolithic algae undergo photoacclimation with increased irradiance reaching the skeleton. As PAM fluorometry has become a major tool for assessing levels of stress and bleaching in corals, the importance of considering the contribution of the endolithic algae to the overall chlorophyll fluorescence measured is highlighted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Elevated ocean temperatures can cause coral bleaching, the loss of colour from reef-building corals because of a breakdown of the symbiosis with the dinoflagellate Symbiodinium. Recent studies have warned that global climate change could increase the frequency of coral bleaching and threaten the long-term viability of coral reefs. These assertions are based on projecting the coarse output from atmosphere-ocean general circulation models (GCMs) to the local conditions around representative coral reefs. Here, we conduct the first comprehensive global assessment of coral bleaching under climate change by adapting the NOAA Coral Reef Watch bleaching prediction method to the output of a low- and high-climate sensitivity GCM. First, we develop and test algorithms for predicting mass coral bleaching with GCM-resolution sea surface temperatures for thousands of coral reefs, using a global coral reef map and 1985-2002 bleaching prediction data. We then use the algorithms to determine the frequency of coral bleaching and required thermal adaptation by corals and their endosymbionts under two different emissions scenarios. The results indicate that bleaching could become an annual or biannual event for the vast majority of the world's coral reefs in the next 30-50 years without an increase in thermal tolerance of 0.2-1.0 degrees C per decade. The geographic variability in required thermal adaptation found in each model and emissions scenario suggests that coral reefs in some regions, like Micronesia and western Polynesia, may be particularly vulnerable to climate change. Advances in modelling and monitoring will refine the forecast for individual reefs, but this assessment concludes that the global prognosis is unlikely to change without an accelerated effort to stabilize atmospheric greenhouse gas concentrations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Extensive coral bleaching Occurred intertidally in early August 2003 in the Capricorn Bunker group (Wistari Reef, Heron and One Tree Islands; Southern Great Barrier Reef). The affected intertidal coral had been exposed to unusually cold (minimum = 13.3degreesC; wet bulb temperature = 9degreesC) and dry winds (44% relative humidity) for 2 d during predawn low tides. Coral bleached in the upper 10 cm of their branches and had less than 0.2 x 10(6) cell cm(-2) as compared with over 2.5 x 10(6), Cell cm(-2) in nonbleached areas. Dark-adapted quantum yields did not differ between symbionts in bleached and nonbleached areas. Exposing symbionts to light, however, led to greater quenching of Photosystem 11 in symbionts in the bleached coral. Bleached areas of the affected colonies had died by September 2003, with areas that were essentially covered by more than 80% living coral decreasing to less than 10% visible living coral cover. By January 2004, coral began to recover, principally from areas of colonies that were not exposed during low tide (i.e., from below dead, upper regions). These data highlight the importance of understanding local weather patterns as well as the effects of longer term trends in global climate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Assessment of the extent of coral bleaching has become an important part of studies that aim to understand the condition of coral reefs. In this study a reference card that uses differences in coral colour was developed as an inexpensive, rapid and non-invasive method for the assessment of bleaching. The card uses a 6 point brightness/saturation scale within four colour hues to record changes in bleaching state. Changes on the scale of 2 units or more reflect a change in symbiont density and chlorophyll a content, and therefore the bleaching state of the coral. When used by non-specialist observers in the field (here on an intertidal reef flat), there was an inter-observer error of I colour score. This technique improves on existing subjective assessment of bleaching state by visual observation and offers the potential for rapid, wide-area assessment of changing coral condition.