11 resultados para Copules


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les copulas archimédiennes hiérarchiques ont récemment gagné en intérêt puisqu’elles généralisent la famille de copules archimédiennes, car elles introduisent une asymétrie partielle. Des algorithmes d’échantillonnages et des méthodes ont largement été développés pour de telles copules. Néanmoins, concernant l’estimation par maximum de vraisemblance et les tests d’adéquations, il est important d’avoir à disposition la densité de ces variables aléatoires. Ce travail remplie ce manque. Après une courte introduction aux copules et aux copules archimédiennes hiérarchiques, une équation générale sur les dérivées des noeuds et générateurs internes apparaissant dans la densité des copules archimédiennes hiérarchique. sera dérivée. Il en suit une formule tractable pour la densité des copules archimédiennes hiérarchiques. Des exemples incluant les familles archimédiennes usuelles ainsi que leur transformations sont présentés. De plus, une méthode numérique efficiente pour évaluer le logarithme des densités est présentée.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’objet du travail est d’étudier les prolongements de sous-copules. Un cas important de l’utilisation de tels prolongements est l’estimation non paramétrique d’une copule par le lissage d’une sous-copule (la copule empirique). Lorsque l’estimateur obtenu est une copule, cet estimateur est un prolongement de la souscopule. La thèse présente au chapitre 2 la construction et la convergence uniforme d’un estimateur bona fide d’une copule ou d’une densité de copule. Cet estimateur est un prolongement de type copule empirique basé sur le lissage par le produit tensoriel de fonctions de répartition splines. Le chapitre 3 donne la caractérisation de l’ensemble des prolongements possibles d’une sous-copule. Ce sujet a été traité par le passé; mais les constructions proposées ne s’appliquent pas à la dépendance dans des espaces très généraux. Le chapitre 4 s’attèle à résoudre le problème suivant posé par [Carley, 2002]. Il s’agit de trouver la borne supérieure des prolongements en dimension 3 d’une sous-copule de domaine fini.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pour modéliser un vecteur aléatoire en présence d'une co-variable, on peut d'abord faire appel à la fonction de répartition conditionnelle. En effet, cette dernière contient toute l'information ayant trait au comportement du vecteur étant donné une valeur prise par la co-variable. Il peut aussi être commode de séparer l'étude du comportement conjoint du vecteur de celle du comportement individuel de chacune de ses composantes. Pour ce faire, on utilise la copule conditionnelle, qui caractérise complètement la dépendance conditionnelle régissant les différentes associations entre les variables. Dans chacun des cas, la mise en oeuvre d'une stratégie d'estimation et d'inférence s'avère une étape essentielle à leur utilisant en pratique. Lorsqu'aucune information n'est disponible a priori quant à un choix éventuel de modèle, il devient pertinent d'opter pour des méthodes non-paramétriques. Le premier article de cette thèse, co-écrit par Jean-François Quessy et moi-même, propose une façon de ré-échantillonner des estimateurs non-paramétriques pour des distributions conditionnelles. Cet article a été publié dans la revue Statistics and Computing. En autres choses, nous y montrons comment obtenir des intervalles de confiance pour des statistiques s'écrivant en terme de la fonction de répartition conditionnelle. Le second article de cette thèse, co-écrit par Taoufik Bouezmarni, Jean-François Quessy et moi-même, s'affaire à étudier deux estimateurs non-paramétriques de la copule conditionnelles, proposés par Gijbels et coll. en présence de données sérielles. Cet article a été soumis dans la revue Statistics and Probability Letters. Nous identifions la distribution asymptotique de chacun de ces estimateurs pour des données mélangeantes. Le troisième article de cette thèse, co-écrit par Taoufik Bouezmarni, Jean-François Quessy et moi-même, propose une nouvelle façon d'étudier les relations de causalité entre deux séries chronologiques. Cet article a été soumis dans la revue Electronic Journal of Statistics. Dans cet article, nous utilisons la copule conditionnelle pour caractériser une version locale de la causalité au sens de Granger. Puis, nous proposons des mesures de causalité basées sur la copule conditionnelle. Le quatrième article de cette thèse, co-écrit par Taoufik Bouezmarni, Anouar El Ghouch et moi-même, propose une méthode qui permette d'estimer adéquatement la copule conditionnelle en présence de données incomplètes. Cet article a été soumis dans la revue Scandinavian Journal of Statistics. Les propriétés asymptotiques de l'estimateur proposé y sont aussi étudiées. Finalement, la dernière partie de cette thèse contient un travail inédit, qui porte sur la mise en oeuvre de tests statistiques permettant de déterminer si deux copules conditionnelles sont concordantes. En plus d'y présenter des résultats originaux, cette étude illustre l'utilité des techniques de ré-échantillonnage développées dans notre premier article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse présente des méthodes de traitement de données de comptage en particulier et des données discrètes en général. Il s'inscrit dans le cadre d'un projet stratégique du CRNSG, nommé CC-Bio, dont l'objectif est d'évaluer l'impact des changements climatiques sur la répartition des espèces animales et végétales. Après une brève introduction aux notions de biogéographie et aux modèles linéaires mixtes généralisés aux chapitres 1 et 2 respectivement, ma thèse s'articulera autour de trois idées majeures. Premièrement, nous introduisons au chapitre 3 une nouvelle forme de distribution dont les composantes ont pour distributions marginales des lois de Poisson ou des lois de Skellam. Cette nouvelle spécification permet d'incorporer de l'information pertinente sur la nature des corrélations entre toutes les composantes. De plus, nous présentons certaines propriétés de ladite distribution. Contrairement à la distribution multidimensionnelle de Poisson qu'elle généralise, celle-ci permet de traiter les variables avec des corrélations positives et/ou négatives. Une simulation permet d'illustrer les méthodes d'estimation dans le cas bidimensionnel. Les résultats obtenus par les méthodes bayésiennes par les chaînes de Markov par Monte Carlo (CMMC) indiquent un biais relatif assez faible de moins de 5% pour les coefficients de régression des moyennes contrairement à ceux du terme de covariance qui semblent un peu plus volatils. Deuxièmement, le chapitre 4 présente une extension de la régression multidimensionnelle de Poisson avec des effets aléatoires ayant une densité gamma. En effet, conscients du fait que les données d'abondance des espèces présentent une forte dispersion, ce qui rendrait fallacieux les estimateurs et écarts types obtenus, nous privilégions une approche basée sur l'intégration par Monte Carlo grâce à l'échantillonnage préférentiel. L'approche demeure la même qu'au chapitre précédent, c'est-à-dire que l'idée est de simuler des variables latentes indépendantes et de se retrouver dans le cadre d'un modèle linéaire mixte généralisé (GLMM) conventionnel avec des effets aléatoires de densité gamma. Même si l'hypothèse d'une connaissance a priori des paramètres de dispersion semble trop forte, une analyse de sensibilité basée sur la qualité de l'ajustement permet de démontrer la robustesse de notre méthode. Troisièmement, dans le dernier chapitre, nous nous intéressons à la définition et à la construction d'une mesure de concordance donc de corrélation pour les données augmentées en zéro par la modélisation de copules gaussiennes. Contrairement au tau de Kendall dont les valeurs se situent dans un intervalle dont les bornes varient selon la fréquence d'observations d'égalité entre les paires, cette mesure a pour avantage de prendre ses valeurs sur (-1;1). Initialement introduite pour modéliser les corrélations entre des variables continues, son extension au cas discret implique certaines restrictions. En effet, la nouvelle mesure pourrait être interprétée comme la corrélation entre les variables aléatoires continues dont la discrétisation constitue nos observations discrètes non négatives. Deux méthodes d'estimation des modèles augmentés en zéro seront présentées dans les contextes fréquentiste et bayésien basées respectivement sur le maximum de vraisemblance et l'intégration de Gauss-Hermite. Enfin, une étude de simulation permet de montrer la robustesse et les limites de notre approche.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ma thèse est composée de trois chapitres reliés à l'estimation des modèles espace-état et volatilité stochastique. Dans le première article, nous développons une procédure de lissage de l'état, avec efficacité computationnelle, dans un modèle espace-état linéaire et gaussien. Nous montrons comment exploiter la structure particulière des modèles espace-état pour tirer les états latents efficacement. Nous analysons l'efficacité computationnelle des méthodes basées sur le filtre de Kalman, l'algorithme facteur de Cholesky et notre nouvelle méthode utilisant le compte d'opérations et d'expériences de calcul. Nous montrons que pour de nombreux cas importants, notre méthode est plus efficace. Les gains sont particulièrement grands pour les cas où la dimension des variables observées est grande ou dans les cas où il faut faire des tirages répétés des états pour les mêmes valeurs de paramètres. Comme application, on considère un modèle multivarié de Poisson avec le temps des intensités variables, lequel est utilisé pour analyser le compte de données des transactions sur les marchés financières. Dans le deuxième chapitre, nous proposons une nouvelle technique pour analyser des modèles multivariés à volatilité stochastique. La méthode proposée est basée sur le tirage efficace de la volatilité de son densité conditionnelle sachant les paramètres et les données. Notre méthodologie s'applique aux modèles avec plusieurs types de dépendance dans la coupe transversale. Nous pouvons modeler des matrices de corrélation conditionnelles variant dans le temps en incorporant des facteurs dans l'équation de rendements, où les facteurs sont des processus de volatilité stochastique indépendants. Nous pouvons incorporer des copules pour permettre la dépendance conditionnelle des rendements sachant la volatilité, permettant avoir différent lois marginaux de Student avec des degrés de liberté spécifiques pour capturer l'hétérogénéité des rendements. On tire la volatilité comme un bloc dans la dimension du temps et un à la fois dans la dimension de la coupe transversale. Nous appliquons la méthode introduite par McCausland (2012) pour obtenir une bonne approximation de la distribution conditionnelle à posteriori de la volatilité d'un rendement sachant les volatilités d'autres rendements, les paramètres et les corrélations dynamiques. Le modèle est évalué en utilisant des données réelles pour dix taux de change. Nous rapportons des résultats pour des modèles univariés de volatilité stochastique et deux modèles multivariés. Dans le troisième chapitre, nous évaluons l'information contribuée par des variations de volatilite réalisée à l'évaluation et prévision de la volatilité quand des prix sont mesurés avec et sans erreur. Nous utilisons de modèles de volatilité stochastique. Nous considérons le point de vue d'un investisseur pour qui la volatilité est une variable latent inconnu et la volatilité réalisée est une quantité d'échantillon qui contient des informations sur lui. Nous employons des méthodes bayésiennes de Monte Carlo par chaîne de Markov pour estimer les modèles, qui permettent la formulation, non seulement des densités a posteriori de la volatilité, mais aussi les densités prédictives de la volatilité future. Nous comparons les prévisions de volatilité et les taux de succès des prévisions qui emploient et n'emploient pas l'information contenue dans la volatilité réalisée. Cette approche se distingue de celles existantes dans la littérature empirique en ce sens que ces dernières se limitent le plus souvent à documenter la capacité de la volatilité réalisée à se prévoir à elle-même. Nous présentons des applications empiriques en utilisant les rendements journaliers des indices et de taux de change. Les différents modèles concurrents sont appliqués à la seconde moitié de 2008, une période marquante dans la récente crise financière.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nous y introduisons une nouvelle classe de distributions bivariées de type Marshall-Olkin, la distribution Erlang bivariée. La transformée de Laplace, les moments et les densités conditionnelles y sont obtenus. Les applications potentielles en assurance-vie et en finance sont prises en considération. Les estimateurs du maximum de vraisemblance des paramètres sont calculés par l'algorithme Espérance-Maximisation. Ensuite, notre projet de recherche est consacré à l'étude des processus de risque multivariés, qui peuvent être utiles dans l'étude des problèmes de la ruine des compagnies d'assurance avec des classes dépendantes. Nous appliquons les résultats de la théorie des processus de Markov déterministes par morceaux afin d'obtenir les martingales exponentielles, nécessaires pour établir des bornes supérieures calculables pour la probabilité de ruine, dont les expressions sont intraitables.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

L'objectif du présent mémoire vise à présenter des modèles de séries chronologiques multivariés impliquant des vecteurs aléatoires dont chaque composante est non-négative. Nous considérons les modèles vMEM (modèles vectoriels et multiplicatifs avec erreurs non-négatives) présentés par Cipollini, Engle et Gallo (2006) et Cipollini et Gallo (2010). Ces modèles représentent une généralisation au cas multivarié des modèles MEM introduits par Engle (2002). Ces modèles trouvent notamment des applications avec les séries chronologiques financières. Les modèles vMEM permettent de modéliser des séries chronologiques impliquant des volumes d'actif, des durées, des variances conditionnelles, pour ne citer que ces applications. Il est également possible de faire une modélisation conjointe et d'étudier les dynamiques présentes entre les séries chronologiques formant le système étudié. Afin de modéliser des séries chronologiques multivariées à composantes non-négatives, plusieurs spécifications du terme d'erreur vectoriel ont été proposées dans la littérature. Une première approche consiste à considérer l'utilisation de vecteurs aléatoires dont la distribution du terme d'erreur est telle que chaque composante est non-négative. Cependant, trouver une distribution multivariée suffisamment souple définie sur le support positif est plutôt difficile, au moins avec les applications citées précédemment. Comme indiqué par Cipollini, Engle et Gallo (2006), un candidat possible est une distribution gamma multivariée, qui impose cependant des restrictions sévères sur les corrélations contemporaines entre les variables. Compte tenu que les possibilités sont limitées, une approche possible est d'utiliser la théorie des copules. Ainsi, selon cette approche, des distributions marginales (ou marges) peuvent être spécifiées, dont les distributions en cause ont des supports non-négatifs, et une fonction de copule permet de tenir compte de la dépendance entre les composantes. Une technique d'estimation possible est la méthode du maximum de vraisemblance. Une approche alternative est la méthode des moments généralisés (GMM). Cette dernière méthode présente l'avantage d'être semi-paramétrique dans le sens que contrairement à l'approche imposant une loi multivariée, il n'est pas nécessaire de spécifier une distribution multivariée pour le terme d'erreur. De manière générale, l'estimation des modèles vMEM est compliquée. Les algorithmes existants doivent tenir compte du grand nombre de paramètres et de la nature élaborée de la fonction de vraisemblance. Dans le cas de l'estimation par la méthode GMM, le système à résoudre nécessite également l'utilisation de solveurs pour systèmes non-linéaires. Dans ce mémoire, beaucoup d'énergies ont été consacrées à l'élaboration de code informatique (dans le langage R) pour estimer les différents paramètres du modèle. Dans le premier chapitre, nous définissons les processus stationnaires, les processus autorégressifs, les processus autorégressifs conditionnellement hétéroscédastiques (ARCH) et les processus ARCH généralisés (GARCH). Nous présentons aussi les modèles de durées ACD et les modèles MEM. Dans le deuxième chapitre, nous présentons la théorie des copules nécessaire pour notre travail, dans le cadre des modèles vectoriels et multiplicatifs avec erreurs non-négatives vMEM. Nous discutons également des méthodes possibles d'estimation. Dans le troisième chapitre, nous discutons les résultats des simulations pour plusieurs méthodes d'estimation. Dans le dernier chapitre, des applications sur des séries financières sont présentées. Le code R est fourni dans une annexe. Une conclusion complète ce mémoire.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le contenu de cette thèse est divisé de la façon suivante. Après un premier chapitre d’introduction, le Chapitre 2 est consacré à introduire aussi simplement que possible certaines des théories qui seront utilisées dans les deux premiers articles. Dans un premier temps, nous discuterons des points importants pour la construction de l’intégrale stochastique par rapport aux semimartingales avec paramètre spatial. Ensuite, nous décrirons les principaux résultats de la théorie de l’évaluation en monde neutre au risque et, finalement, nous donnerons une brève description d’une méthode d’optimisation connue sous le nom de dualité. Les Chapitres 3 et 4 traitent de la modélisation de l’illiquidité et font l’objet de deux articles. Le premier propose un modèle en temps continu pour la structure et le comportement du carnet d’ordres limites. Le comportement du portefeuille d’un investisseur utilisant des ordres de marché est déduit et des conditions permettant d’éliminer les possibilités d’arbitrages sont données. Grâce à la formule d’Itô généralisée il est aussi possible d’écrire la valeur du portefeuille comme une équation différentielle stochastique. Un exemple complet de modèle de marché est présenté de même qu’une méthode de calibrage. Dans le deuxième article, écrit en collaboration avec Bruno Rémillard, nous proposons un modèle similaire mais cette fois-ci en temps discret. La question de tarification des produits dérivés est étudiée et des solutions pour le prix des options européennes de vente et d’achat sont données sous forme explicite. Des conditions spécifiques à ce modèle qui permettent d’éliminer l’arbitrage sont aussi données. Grâce à la méthode duale, nous montrons qu’il est aussi possible d’écrire le prix des options européennes comme un problème d’optimisation d’une espérance sur en ensemble de mesures de probabilité. Le Chapitre 5 contient le troisième article de la thèse et porte sur un sujet différent. Dans cet article, aussi écrit en collaboration avec Bruno Rémillard, nous proposons une méthode de prévision des séries temporelles basée sur les copules multivariées. Afin de mieux comprendre le gain en performance que donne cette méthode, nous étudions à l’aide d’expériences numériques l’effet de la force et la structure de dépendance sur les prévisions. Puisque les copules permettent d’isoler la structure de dépendance et les distributions marginales, nous étudions l’impact de différentes distributions marginales sur la performance des prévisions. Finalement, nous étudions aussi l’effet des erreurs d’estimation sur la performance des prévisions. Dans tous les cas, nous comparons la performance des prévisions en utilisant des prévisions provenant d’une série bivariée et d’une série univariée, ce qui permet d’illustrer l’avantage de cette méthode. Dans un intérêt plus pratique, nous présentons une application complète sur des données financières.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans cette thèse on s’intéresse à la modélisation de la dépendance entre les risques en assurance non-vie, plus particulièrement dans le cadre des méthodes de provisionnement et en tarification. On expose le contexte actuel et les enjeux liés à la modélisation de la dépendance et l’importance d’une telle approche avec l’avènement des nouvelles normes et exigences des organismes réglementaires quant à la solvabilité des compagnies d’assurances générales. Récemment, Shi et Frees (2011) suggère d’incorporer la dépendance entre deux lignes d’affaires à travers une copule bivariée qui capture la dépendance entre deux cellules équivalentes de deux triangles de développement. Nous proposons deux approches différentes pour généraliser ce modèle. La première est basée sur les copules archimédiennes hiérarchiques, et la deuxième sur les effets aléatoires et la famille de distributions bivariées Sarmanov. Nous nous intéressons dans un premier temps, au Chapitre 2, à un modèle utilisant la classe des copules archimédiennes hiérarchiques, plus précisément la famille des copules partiellement imbriquées, afin d’inclure la dépendance à l’intérieur et entre deux lignes d’affaires à travers les effets calendaires. Par la suite, on considère un modèle alternatif, issu d’une autre classe de la famille des copules archimédiennes hiérarchiques, celle des copules totalement imbriquées, afin de modéliser la dépendance entre plus de deux lignes d’affaires. Une approche avec agrégation des risques basée sur un modèle formé d’une arborescence de copules bivariées y est également explorée. Une particularité importante de l’approche décrite au Chapitre 3 est que l’inférence au niveau de la dépendance se fait à travers les rangs des résidus, afin de pallier un éventuel risque de mauvaise spécification des lois marginales et de la copule régissant la dépendance. Comme deuxième approche, on s’intéresse également à la modélisation de la dépendance à travers des effets aléatoires. Pour ce faire, on considère la famille de distributions bivariées Sarmanov qui permet une modélisation flexible à l’intérieur et entre les lignes d’affaires, à travers les effets d’années de calendrier, années d’accident et périodes de développement. Des expressions fermées de la distribution jointe, ainsi qu’une illustration empirique avec des triangles de développement sont présentées au Chapitre 4. Aussi, nous proposons un modèle avec effets aléatoires dynamiques, où l’on donne plus de poids aux années les plus récentes, et utilisons l’information de la ligne corrélée afin d’effectuer une meilleure prédiction du risque. Cette dernière approche sera étudiée au Chapitre 5, à travers une application numérique sur les nombres de réclamations, illustrant l’utilité d’un tel modèle dans le cadre de la tarification. On conclut cette thèse par un rappel sur les contributions scientifiques de cette thèse, tout en proposant des angles d’ouvertures et des possibilités d’extension de ces travaux.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les méthodes classiques d’analyse de survie notamment la méthode non paramétrique de Kaplan et Meier (1958) supposent l’indépendance entre les variables d’intérêt et de censure. Mais, cette hypothèse d’indépendance n’étant pas toujours soutenable, plusieurs auteurs ont élaboré des méthodes pour prendre en compte la dépendance. La plupart de ces méthodes émettent des hypothèses sur cette dépendance. Dans ce mémoire, nous avons proposé une méthode d’estimation de la dépendance en présence de censure dépendante qui utilise le copula-graphic estimator pour les copules archimédiennes (Rivest etWells, 2001) et suppose la connaissance de la distribution de la variable de censure. Nous avons ensuite étudié la consistance de cet estimateur à travers des simulations avant de l’appliquer sur un jeu de données réelles.