904 resultados para Copper oxide nano-particles, Polyaniline derivatives film, Hydrogen peroxide, Electrocatalysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chitosan is a natural polymer obtained by deacetylation of chitin. After cellulose chitin is the second most abundant polysaccharide in nature. It is biologically safe, non-toxic, biocompatible and biodegradable polysaccharide. Chitosan loaded with zinc oxide nanoparticles have gained more attention bio sorbent because of their better stability, low toxicity, simple and mild preparation method and high sorption capacity. Chitosan loaded with zinc oxide nanoparticles have been prepared of chitosan. The physicochemical properties of nanoparticles were characterized by Fourier Transform Infrared (FTIR), Scanning Electron Microscope (SEM) Analysis. Its sorption capacity for lead and cadmium ions studied. Factors such as initial concentration of lead ions, cadmium ions sorbent amount, contact time, pH and temperature were investigated. It is found that chitosan loaded with zinc oxide nanoparticles could sorb lead and cadmium ions effectively, this sorption rate was affected significantly by initial concentration of lead and cadmium ions, sorbent amount, contact time, pH of solution. The maximum of percentage of lead sorption was 98 % with initial concentration 3 mg/l and sorbent amount 0.05 g, pH 11 in 45 min and cadmiumwas90 %with initial concentration 3mg/l and sorbent amount 0.05 g, pH 11 in45 min. Consequently chitosan loaded with zinc oxide nanoparticles demonstrated greater fixation ability for lead ions than cadmium ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electric-field induced nonlinear actuation behavior is demonstrated in a bulk nanotube (CNT) structure under ambient conditions. Completely recoverable and non-degradable actuation over several cycles of electric-field is measured in these structures. A symmetric and polarity independent displacement corresponding up to an axial strain of 14% is measured upon application of a low strength electric field of 4.2 kV/m in the axial direction. However, a much lower strain of similar to 1% is measured in the radial (or, transverse) direction. Furthermore, the electric field induced actuation increases by more than a factor of 2 upon impregnating the CNT cellular structure with copper oxide nano-particles. An electrostriction mechanism, based on the electric-field induced polarization of CNT strands, is proposed to account for the reported actuation behavior. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly stable silver nanoparticles (Ag NPs) in agar-agar (Ag/agar) as inorganic-organic hybrid were obtained as free-standing film by in situ reduction of silver nitrate by ethanol. The antimicrobial activity of Ag/agar film on Escherichia coli (E. coil), Staphylococcus aureus (S. aureus), and Candida albicans (C albicans) was evaluated in a nutrient broth and also in saline solution. In particular, films were repeatedly tested for antimicrobial activity after recycling. UV-vis absorption and TEM studies were carried out on films at different stages and morphological studies on microbes were carried out by SEM. Results showed spherical Ag NPs of size 15-25 nm, having sharp surface plasmon resonance (SPR) band. The antimicrobial activity of Ag/agar film was found to be in the order, C. albicans > E. coil > S. aureus, and antimicrobial activity against C. albicans was almost maintained even after the third cycle. Whereas, in case of E. coil and S. aureus there was a sharp decline in antimicrobial activity after the second cycle. Agglomeration of Ag NPs in Ag/agar film on exposure to microbes was observed by TEM studies. Cytotoxic experiments carried out on HeLa cells showed a threshold Ag NPs concentration of 60 mu g/mL, much higher than the minimum inhibition concentration of Ag NPs (25.8 mu g/mL) for E. coli. The mechanical strength of the film determined by nanoindentation technique showed almost retention of the strength even after repeated cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite membrane modified electrodes were prepared by electrochemical deposition of platinum particles in a poly(o-phenylenediamine) (PPD) him coated on glassy carbon (GC) electrodes. The modified electrodes showed high catalytic activity towards the reduction of oxygen and hydrogen peroxide. A four-electron transfer process predominated the reduction process. The pH dependence and the stability of the electrodes were also studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

<p>Two stable nanofluids comprising of mixed valent copper(<sub>I</sub>,<sub>II</sub>) oxide clusters (&lt;1 nm) suspended in 1-butyl-3-methylimidazolium acetate, [C(<sub>4</sub>)mim][OAc], and copper(<sub>II</sub>) oxide nanoparticles (&lt;50 nm) suspended in trioctyl(dodecyl) phosphonium acetate, [P-<sub>88812</sub>][OAc], were synthesised in a facile one-pot reaction from solutions of copper(<sub>II</sub>) acetate hydrate in the corresponding ionic liquids. Formation of the nanostructures was studied using <sup>13</sup>C NMR spectroscopy and differential scanning calorimetry (DSC). From a solution of Cu(OAc)<sub>2</sub> in 1-ethyl-3-methylimidazolium acetate, [C<sub>2</sub>mim][OAc], crystals were obtained that revealed the structure of [C<sub>2</sub>mim][Cu<sub>3</sub>(OAc)<sub>5</sub>(OH)<sub>2</sub>(H<sub>2</sub>O)]center dot H<sub>2</sub>O, indicating the formation of copper hydroxo-clusters in the course of the reaction. Synthesised nanostructures were studied using transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Physical properties of the prepared IL-nanofluids were examined using IR and UV-VIS spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and densitometry. </p>

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Y Ba Cu oxide thin films were grown epitaxially on single cryst. yttria-stabilized zirconia substrates by laser deposition. [on SciFinder(R)]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Superconducting YBa2Cu3O7 thin films with various thicknesses from 100 Ã to 5000 Ã were deposited on (100) SrTiO3 substrates with std. BaF2 coevaporation process. The films had crit. temps. of up to 93 K. The best crit. currents were 1 Ã 106 A/cm2 at 77 K and 3 Ã 107 A/cm2 at 4.2 K. The crit. current was generally higher for thinner films. Two different etching methods were used to pattern the films for jc measurements: Ar ion etching and EDTA wet etching. The wet etching was found to work well for thicker films (>1000 Ã). For the thinner films, the ion etching process was preferred because of the reduced film surface degrdn. [on SciFinder(R)]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Homogeneous composite thin films of Fe2O3-carbon nanotube were synthesized in a novel, single-step process by metalorganic chemical vapor deposition (MOCVD) using ferric acetyl acetonate as precursor. The deposition of composite takes place in a narrow range of CVD conditions, beyond which the deposition either multiwall carbon nanotubes (MWNTs) only or hematite (α-Fe2O3) only takes place. The composite film formed on stainless steel substrates were tested for their supercapacitive properties in various aqueous electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Copper oxide (CuO) is one of the most important transition metal oxides due to its unique properties. It is used in various technological applications such as high critical temperature, superconductors, gas sensors, in photoconductive applications and so on. Recently, it has been used as an antimicrobial agent against various pathogenic bacteria. In the present investigation, we studied the structural and antidermatophytic properties of CuO nanoparticles (NPs) synthesized by a precipitation technique. Copper sulfate was used as a precursor and sodium hydroxide as a reducing agent. Scanning electron microscopy (SEM) showed flower-shaped CuO NPs and X-ray diffraction (XRD) pattern showed the crystalline nature of CuO NPs. These NPs were evaluated against two prevalent species of dermatophytes, i.e. Trichophyton rubrum and T. mentagrophytes by using the broth microdilution technique. Further, the NPs activity was also compared with synthetic sertaconazole. Although better antidermatophytic activity was exhibited with sertaconazole as compared to NPs, being synthetic, sertaconazole may not be preferred, as it shows different adverse effects. Trichophyton mentagrophytes is more susceptible to NPs than T. rubrum. A phylogenetic approach was applied for predicting differences in susceptibility of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A highly sensitive microstructured polymer optical fiber (MPOF) probe for hydrogen peroxide was made by forming a rhodamine 6G-doped titanium dioxide film on the side walls of array holes in an MPOF. It was found that hydrogen peroxide only has a response to the MPOF probe in a certain concentration of potassium iodide in sulfuric acid solution. The calibration graph of fluorescence intensity versus hydrogen peroxide concentration is linear in the range of 1.6 x 10(-7) mol/L to 9.6 x 10(-5) mol/L. The method, with high sensitivity and a wide linear range, has been applied to the determination of trace amounts of hydrogen peroxide in a few real samples, such as rain water and contact lens disinfectant, with satisfactory results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A sensor for H2O2 amperometric detection based on a Prussian blue (PB) analogue was developed. The electrocatalytic process allows the determination of hydrogen peroxide at 0.0 V with a limit of detection of 1.3 mu mol L-1 in a flow injection analysis (FIA) configuration. Studies on the optimization of the FIA parameters were performed and under optimal FIA operational conditions the linear response of the method was extended up to 500 mu mol L-1 hydrogen peroxide with good stability. The possibility of using the developed sensor in medium containing sodium ions and the increased operational stability constitute advantages in comparison with PB-based amperometric sensors. The usefulness of the methodology was demonstrated by addition-recovery experiments with rainwater samples and values were in the 98.8 to 103% range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)