688 resultados para Copper alloys.
Resumo:
A number of binary Cu-X alloys (X = Fe, Cr, Si and Al) with alloying elements up to approximate to 12 at % for Fe and Cr, and = 20 at% for Al and Si were cast into thin ribbons (30-50 mu m thickness) by chill block melt spinning. The structural state of the as-cast ribbons was determined by X-ray diffraction (XRD) and microstructures of the quenched alloys were compared with the ingot equivalent, It was possible to achieve solid solution and fine dispersion of secondary phase beyond XRD detection up to approximate to 8 at% solute for Fe and Cr, which is beyond the expected concentration limits from equilibrium phase diagrams. The effects of alloying on resistivity and microhardness are also presented.
Resumo:
L’objet de la présente étude est le développement, l’application et la diffusion de la technologie associée à divers types d’alliages de cuivre, en particulier l’alliage du plomb-bronze, en Grèce ancienne, dans ses colonies, ainsi qu’en Étrurie. Le plomb-bronze est un mélange de diverses proportions d’étain, de cuivre et de plomb. Le consensus général chez les archéométallurgistes est que le plomb-bronze n’était pas communément utilisé en Grèce avant la période hellénistique; par conséquent, cet alliage a reçu très peu d’attention dans les documents d’archéologie. Cependant, les analyses métallographiques ont prouvé que les objets composés de plomb ajouté au bronze ont connu une distribution étendue. Ces analyses ont aussi permis de différencier la composition des alliages utilisés dans la fabrication de divers types de bronzes, une preuve tangible que les métallurgistes faisaient la distinction entre les propriétés du bronze d’étain et celles du plomb-bronze. La connaissance de leurs différentes caractéristiques de travail permettait aux travailleurs du bronze de choisir, dans bien des cas, l’alliage approprié pour une utilisation particulière. L’influence des pratiques métallurgiques du Proche-Orient a produit des variations tant dans les formes artistiques que dans les compositions des alliages de bronze grecs durant les périodes géométrique tardive et orientalisante. L’utilisation du plomb-bronze dans des types particuliers d’objets coulés montre une tendance à la hausse à partir de la période orientalisante, culminant dans la période hellénistique tardive, lorsque le bronze à teneur élevée en plomb est devenu un alliage commun. La présente étude analyse les données métallographiques de la catégorie des objets coulés en bronze et en plomb-bronze. Elle démontre que, bien que l’utilisation du plomb-bronze n’était pas aussi commune que celle du bronze d’étain, il s’agissait néanmoins d’un mélange important d’anciennes pratiques métallurgiques. Les ères couvertes sont comprises entre les périodes géométrique et hellénistique.
Resumo:
The manufacture of copper alloy flat rolled metals involves hot and cold rolling operations, together with annealing and other secondary processes, to transform castings (mainly slabs and cakes) into such shapes as strip, plate, sheet, etc. Production is mainly to customer orders in a wide range of specifications for dimensions and properties. However, order quantities are often small and so process planning plays an important role in this industry. Much research work has been done in the past in relation to the technology of flat rolling and the details of the operations, however, there is little or no evidence of any research in the planning of processes for this type of manufacture. Practical observation in a number of rolling mills has established the type of manual process planning traditionally used in this industry. This manual approach, however, has inherent drawbacks, being particularly dependent on the individual planners who gain their knowledge over a long span of practical experience. The introduction of the retrieval CAPP approach to this industry was a first step to reduce these problems. But this could not provide a long-term answer because of the need for an experienced planner to supervise generation of any plan. It also fails to take account of the dynamic nature of the parameters involved in the planning, such as the availability of resources, operation conditions and variations in the costs. The other alternative is the use of a generative approach to planning in the rolling mill context. In this thesis, generative methods are developed for the selection of optimal routes for single orders and then for batches of orders, bearing in mind equipment restrictions, production costs and material yield. The batch order process planning involves the use of a special cluster analysis algorithm for optimal grouping of the orders. This research concentrates on cold-rolling operations. A prototype model of the proposed CAPP system, including both single order and batch order planning options, has been developed and tested on real order data in the industry. The results were satisfactory and compared very favourably with the existing manual and retrieval methods.
Resumo:
The electrochemical behavior in 0.5 M H2SO4 at 25 degreesC of a Cu-Al(9.3 wt%)-Ag(4.7 wt%) alloy submitted to different heat treatments and an annealed Cu- Al(9.7 wt%)-Ag(34.2 wt%) were studied by means of open circuit potential (E-mix) measurements, potentiodynamic polarizations and cyclic voltammetry. SEM and EDX microanalysis were used to examine the changes caused by the electrochemical perturbations. The steady state potentials observed for the studied samples were correlated in terms of the phases present in the alloys surface. The resulting E/I potentiodynamic profiles were explained in terms of the potentiodynamic behavior of pure copper and pure silver. The presence of aluminum decreased the extent of copper oxidation. In the apparent Tafel potential region, two anodic Tafel slopes were obtained: 40 mV dec(-1) in the low potential region and 130 mV dec(-1) in the high potential region, which were related with the electrochemical processes involving copper oxidation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.
Resumo:
Published also as University of Illinois Engineering Experiment Station bulletin no. 93 with title: A preliminary study of the alloys of chromium, copper, and nickel, by D.F. McFarland and O.E. Harder.
Resumo:
Photocopy. U.S. Dept. of Commerce, Office of Technical Services. AD606806.
Resumo:
This research is part of a project whose scope was to investigate the engineering properties of new non-commercial alloy formulations based on the Cu rich corner of the Cu-Fe-Cr ternary system with the primary aim of exploring the development of a new cost-effective high-strength, high-conductivity copper alloy. The literature indicated that Cu rich Cu-Cr and Cu-Fe alloys have been thoroughly investigated. A number of commercial alloys have been developed and these are used for a variety of applications requiring combinations of high-strength, high-conductivity and resistance to softening. Little evidence was found in the literature that the Cu rich corner of the Cu-Fe-Cr system had previously been investigated for the purpose of developing high-strength, high-conductivity copper alloys resistant to softening. The aim of these present investigations was to explore the possibility that new alloys could be developed that combined the properties of both sets of alloys, ie large precipitation hardening response combined with the ability to stabilise cold worked microstructures to high temperatures while at the same maintain high electrical conductivity. To assess the feasibility of this goal the following alloys were chosen for investigation: Cu-0.7wt%Cr-0.3wt%Fe, Cu-0.7wt%Cr-0.8wt%Fe, Cu-0.7wt%Cr-2.0wt%Fe. This paper reports on the mechanical property investigation which indicated that the Cu-0.7wt%Cr-0.3wt%Fe, and Cu-0.7wt%Cr-2.0wt%Fe alloys were worthy of further investigation. (C) 2001 Kluwer Academic Publishers.
Resumo:
The identification, characterization and stability range of the phases present in a series of Cu-Al alloys, with Al content from 11.0 to 15.0 wt.%, were studied by Differential Thermal Analysis (DTA), Optical Microscopy (OM), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Selected Area Electron Diffraction (SAED), Auger Electron Spectroscopy (AES), Energy Dispersive X-Ray Spectroscopy (EDX) and X-Ray Diffraction (XRD). In some alloys and in a temperature range from 790 degrees C to 850 degrees C the presence of black spots exhibiting regular shapes and an homogeneous distribution was noticed through metallographic microscopy. Data from TEM and AES indicate that these spots are made of two monocrystalline phases having different Al contents and a crystallographic orientation relationship. (C) 1998 Elsevier B.V. S.A. All rights reserved.
Resumo:
Bacteria, yeasts, and viruses are rapidly killed on metallic copper surfaces, and the term "contact killing" has been coined for this process. While the phenomenon was already known in ancient times, it is currently receiving renewed attention. This is due to the potential use of copper as an antibacterial material in health care settings. Contact killing was observed to take place at a rate of at least 7 to 8 logs per hour, and no live microorganisms were generally recovered from copper surfaces after prolonged incubation. The antimicrobial activity of copper and copper alloys is now well established, and copper has recently been registered at the U.S. Environmental Protection Agency as the first solid antimicrobial material. In several clinical studies, copper has been evaluated for use on touch surfaces, such as door handles, bathroom fixtures, or bed rails, in attempts to curb nosocomial infections. In connection to these new applications of copper, it is important to understand the mechanism of contact killing since it may bear on central issues, such as the possibility of the emergence and spread of resistant organisms, cleaning procedures, and questions of material and object engineering. Recent work has shed light on mechanistic aspects of contact killing. These findings will be reviewed here and juxtaposed with the toxicity mechanisms of ionic copper. The merit of copper as a hygienic material in hospitals and related settings will also be discussed.
Resumo:
The literature available on submerged arc welding of copper and copper alloys, submerged arc welding with strip electrodes, and related areas has been reviewed in depth. Copper cladding of mild steel substrates by deposition from strip electrodes using the submerged arc welding process has been successful. A wide range of parameters, and several fluxes have been investigated. The range of deposit compositions is 66.4% Cu to 95.7% Cu. The weld beads have been metallographically examined using optical and electron microscopy. Equating weld beads to a thermodynamical equivalent of iron has proven to be an accurate and simplified means of handling quantitative data for multicomponent welds. Empirical equations derived using theoretical considerations characterize the weld bead dimensions as functions of the welding parameters and hence composition. The melting rate for strip electrodes is dependent upon the current-voltage product. Weld nugget size is increased by increased thermal transfer efficiencies resulting from stirring which is current dependent. The presence of Fe2O3 in a flux has been demonstrated to diminish electrode melting rate and drastically increase penetration, making flux choice the prime consideration in cladding operations. A theoretical model for welding with strip electrodes and the submerged arc process is presented.
Resumo:
Objective. To determine whether copper incorporated into hospital ward furnishings and equipment can reduce their surface microbial load. Design. A crossover study. Setting. Acute care medical ward with 19 beds at a large university hospital. Methods. Fourteen types of frequent-touch items made of copper alloy were installed in various locations on an acute care medical ward. These included door handles and push plates, toilet seats and flush handles, grab rails, light switches and pull cord toggles, sockets, overbed tables, dressing trolleys, commodes, taps, and sink fittings. Their surfaces and those of equivalent standard items on the same ward were sampled once weekly for 24 weeks. The copper and standard items were switched over after 12 weeks of sampling to reduce bias in usage patterns. The total aerobic microbial counts and the presence of indicator microorganisms were determined. Results. Eight of the 14 copper item types had microbial counts on their surfaces that were significantly lower than counts on standard materials. The other 6 copper item types had reduced microbial numbers on their surfaces, compared with microbial counts on standard items, but the reduction did not reach statistical significance. Indicator microorganisms were recovered from both types of surfaces; however, significantly fewer copper surfaces were contaminated with vancomycin-resistant enterococci, methicillin-susceptible Staphylococcus aureus, and coliforms, compared with standard surfaces. Conclusions. Copper alloys (greater than or equal to 58% copper), when incorporated into various hospital furnishings and fittings, reduce the surface microorganisms. The use of copper in combination with optimal infection-prevention strategies may therefore further reduce the risk that patients will acquire infection in healthcare environments.