995 resultados para Copper Compounds - Superconductivity
Resumo:
X-ray absorpion near edge structure (xanes) of copper compounds with copper in 1+, 2+ and 3+ states has been studied. Extended x-ray absorption fine structure (exafs) has been employed to determine bond distances and coordination numbers in several model copper compounds. Employing bothxanes andexafs, the structure of the copper complex formed by the micro-organismPseudomonas aeruginosa has been shown to be square-planar with the Cu-O distance close to that in cupric glucuronates and cupric acetylacetonate.exafs has been shown to be useful for studying metal-metal bonds in copper carboxylates.
Resumo:
Chemical shifts, ΔE, of the K-absorption discontinuity in several compounds of copper possessing formal oxidation states between 0 and III have been measured. The shifts show a parabolic dependence on the formal oxidation state as well as on the effective atomic charge, q, on copper. Anomalous chemical shifts shown by some of the compounds are discussed in terms of the bonding in these compounds. The ΔE values have also been correlated with the core electron binding energies obtained from X-ray photoelectron spectroscopy.
Resumo:
YBCO thin films were fabricated by laser deposition, in situ on MgO substrates, using both O2 and N2O as process gas. Films with Tc above 90 K and jc of 106 A/cm2 at 77 K were grown in oxygen at a substrate temperature of 765 °C. Using N2O, the optimum substrate temperature was 745 °C, giving a Tc of 87 K. At lower temperatures, the films made in N2O had higher Tc (79 K) than the films made in oxygen (66 K). SEM and STM investigations of the film surfaces showed the films to consist of a comparatively smooth background surface and a distribution of larger particles. Both the particle size and the distribution density depended on the substrate temperature.
Resumo:
Three new copper compounds, Cu-2[C12H8N2](2)[C28H2OS4O16][H2O](11.9) (1), Cu-2[C12H8N2](3)[C28H20S4O16][H2O](5) (2), and Cu-2[C12H8N2](4)[C24H12S8O16][H2O](10.5) (3), were hydrothermally synthesized and structurally determined by X-ray diffraction and TG-DTA analyses. Interestingly, Compounds 1 and 2 were synthesized in a one-pot reaction. Complexes 1 and 3 contain capsule units, which are further assembled into three-dimensional (3-D) architectures with a-Po-related topology by pi-pi stacking and/or hydrogen-bonding interactions.
Resumo:
The crystal structure of Cu(PM)2(N03hoH20 (where PM is pyridoxamine, CSHI2N202) has been determined from three dimensional x-ray diffraction data. The crystals are triclinic, space group pI, a = 14.248 (2), b = 8.568 (1), c = 9.319 (1) 1, a = 94.08 (1), e = 89.73 (1), y~~ 99.18 (1)°, z = 2, jl(MoK) = 10.90 em-I, Po = 1.61 g/cm3 and Pc = 1.61 g/em3• The structure a was solved by Patterson techniques from data collected on a Picker 4-circle diffractometer to 26max = 45°. All atoms, including hydrogens, have been located. Anisotropic thermal parameters have been refined for all nonhydrogen atoms. For the 2390 independent reflections with F ? 3cr(F) , R = 0.0408. The results presented here provide the first detailed structural information of a metal complex with PM itself. The copper atoms are located on centres of symmetry and each is chela ted by two PM zwitterions through the amino groups and phenolate oxygen atoms. The zwitterionic form found in this structure involves the loss of a proton from the phenolate group and protonation of the pyridine ring nitrogen atoms. The two independent Cu(PM)2 moieties are symmetrically bridged by a single oxygen atom from one of the nitrate groups. The second nitrate group is not coordinated to the copper atoms but is central to an extensive hydrogen bonding network involving the water molecule and uncoordinated functional groups of PM.
Resumo:
The OECD 14 d earthworm acute toxicity test was used to determine the toxicity of copper added as copper nitrate (Cu(NO3)(2)), copper sulphate (CuSO4) and malachite (Cu-2(OH)(2)(CO3)) to Eisenia fetida Savigny. Cu(NO3)(2), and CuSO4 were applied in both an aqueous (aq) and solid (s) form, Cu-2(OH)(2)(CO3) was added as a solid. Soil solution was extracted by centrifugation, and analysed for copper. Two extractants [0.01 M CaCl2 and 0.005 M diethylenetriminpentaacetic acid (DTPA)] were used as a proxy of the bioavailable copper fraction in the soil. For bulk soil copper content the calculated copper toxicity decreased in the order nitrate > sulphide > carbonate, the same order as decreasing solubility of the metal compounds. For Cu(NO3)(2) and CuSO4, the LC50s obtained were not significantly different when the compound was added in solution or solid form. There was a significant correlation between the soil solution copper concentration and the percentage earthworm mortality for all 3 copper compounds (P less than or equal to 0.05) indicating that the soil pore water copper concentration is important for determining copper availability and toxicity to E. fetida. In soil avoidance tests the earthworms avoided the soils treated with Cu(NO3)(2) (aq and s) and CuSO4 (aq and s), at all concentrations used (110-8750 mug Cu g(-1), and 600-8750 mug Cu g(-1) respectively). In soils treated with Cu-2(OH2)CO3, avoidance behaviour was exhibited at all concentrations greater than or equal to3500 mug Cu g(-1). There was no significant correlation between the copper extracted by either CaCl2 or DTPA and percentage mortality. These two extractants are therefore not useful indicators of copper availability and toxicity to E. fetida.
Resumo:
Xanthomonas axonopodis pv. citri (Xac) causes citrus canker and the completion of the Xac genome sequence has opened up the possibility of investigating basic cellular mechanisms at the genomic level. Copper compounds have been extensively used in agriculture to control plant diseases. The copA and copB genes, identified by annotation of the Xac genome, encode homologues of proteins involved in copper resistance. A gene expression assay by Northern blotting revealed that copA and copB are expressed as a unique transcript specifically induced by copper. Synthesis of the gene products was also induced by copper, reaching a maximum level at 4 h after addition of copper to the culture medium. CopA was a cytosolic protein and CopB was detected in the cytoplasmic membrane. The gene encoding CopA was disrupted by the insertion of a transposon, leading to mutant strains that were unable to grow in culture medium containing copper, even at the lowest CUSO4 concentration tested (0.25 mM), whereas the wild-type strain was able to grow in the presence of 1 mM copper. Cell suspensions of the wild-type and mutant strains in different copper concentrations were inoculated in lemon leaves to analyse their ability to induce citrus canker symptoms. Cells of mutant strains showed higher sensitivity than the wild-type strain in the presence of copper, i.e. they were not able to induce citrus canker symptoms at high copper concentrations and exhibited a more retarded growth in planta.
Resumo:
Copper complexes containing inorganic ligands were loaded on a functionalized titania (F-TiO2) to obtain drug delivery systems. The as-received copper complexes and those released from titania were tested as toxic agents on different cancer cell lines. The sol–gel method was used for the synthesis and surface functionalization of the titania, as well as for loading the copper complexes, all in a single step. The resultant Cu/F-TiO2 materials were characterized by several techniques. An “in vitro” releasing test was developed using an aqueous medium. Different concentrations (15.6–1000 µg mL−1) of each copper complex, those loaded on titania (Cu/F-TiO2), functionalized titania, and cis-Pt as a reference material, were incubated on RG2, C6, U373, and B16 cancer cell lines for 24 h. The morphology of functionalized titania and the different Cu/F-TiO2 materials obtained consists of aggregated nanoparticles, which generate mesopores. The amorphous phase (in dominant proportion) and the anatase phase were the structures identified through the X-ray diffraction profiles. These results agree with high-resolution transmission electron microscopy. Theoretical studies indicate that the copper compounds were released by a Fickian diffusion mechanism. It was found that independently of the copper complex and also the cell line used, low concentrations of each copper compound were sufficient to kill almost 100 % of cancer cells. When the cancer cells were treated with increasing concentrations of the Cu/F-TiO2 materials the number of survival cells decreased. Both copper complexes alone as well as those loaded on TiO2 had higher toxic effect than cis-Pt.
Resumo:
A new approach to treating large Z systems by quantum Monte Carlo has been developed. It naturally leads to notion of the 'valence energy'. Possibilities of the new approach has been explored by optimizing the wave function for CuH and Cu and computing dissociation energy and dipole moment of CuH using variational Monte Carlo. The dissociation energy obtained is about 40% smaller than the experimental value; the method is comparable with SCF and simple pseudopotential calculations. The dipole moment differs from the best theoretical estimate by about 50% what is again comparable with other methods (Complete Active Space SCF and pseudopotential methods).
Resumo:
El fuego bacteriano, causado por Erwinia amylovora, es una enfermedad muy importante a nivel comercial y económico porque afecta a plantas de la familia de las rosáceas y es especialmente agresiva en manzano (Pyrus malus) y peral (Pyrus communis), así como en plantas ornamentales (Crataegus, Cotoneaster o Pyracantha). Esta enfermedad está distribuida por todo el mundo en zonas climáticas templadas de Amércia del Norte, Nueva Zelanda, Japón, Israel, Turquí y Europa. En España, el fuego bacteriano fue detectado por primera vez en 1995 en el norte del País (Euskadi) y más tarde en nuevos focos aparecidos en otras áreas. La enfermedad puede ser controlada comercialmente mediante la aplicación de pesticidas quimicos (derivados de cobre, antibioticos). Sin embargo, muchos de los productos químicos presentan baja actividad o causan fitotoxicidad, y la estreptomicina, el producto más eficaz, esta prohibido en muchos países, incluyendo España. Por tanto, en ausencia de apropiados agentes químicos, el control biológico se contempla como una buena alternativa. En el presente trabajo, un agente de control biológico, Pseudomonas fluorescens EPS62e, ha sido seleccionada de entre 600 aislados de las especies P. fluorescens y Pantoea agglomerans obtenidos de flores, frutos y hojas de plantas de la familia de las rosáceas durante una prospección llevada a cabo en varias áreas geográficas de España. La cepa ha sido seleccionada por su capacidad de suprimir la infecciones producidas por E. amylovora frutos inmaduros, flores y brotes de peral en condiciones de ambiente controlado, presentando unos niveles de control similares a los obtenidos mediante el control químico usando derivados de cobre o antibióticos. La cepa además ha mostrado la capacidad de colonizar y sobrevivir en flores y heridas producidas en frutos inmaduros en condiciones de ambiento controlado pero también en flores en condiciones de campo. La exclusión de E. amylovora medinate la colonización de la superficie, el consumo de nutrientes, y la interacción entre las células del patógeno y del agente de biocontrol es la principal causa de la inhibición del fuego bacteriano por la cepa EPS62e. Estas características constituyen aspectos interesantes para un desarrollo efectivo de la cepa EPS62e como un agente de biocontrol del fuego bacteriano en condiciones comerciales.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The crystallization of fluoroindate glasses doped with Gd3+, Mn2+ and Cu2+ heat treated at different temperatures, ranging from the glass transition temperature (Tg) to the crystallization temperature (Tc), are investigated by electron paramagnetic resonance (EPR) and 19F nuclear magnetic resonance (NMR). The EPR spectra indicate that the Cu2+ ions in the glass are located in axially distorted octahedral sites. In the crystallized glass, the g-values agreed with those reported for Ba2ZnF6, which correspond to Cu2+ in a tetragonal compressed F- octahedron and to Cu2+ on interstitial sites with a square-planar F- co-ordination. The EPR spectra of the Mn2+ doped glasses exhibit a sextet structure due to the Mn2+ hyperfine interaction. These spectra suggest a highly ordered environment for the Mn2+ ions (close to octahedral symmetry) in the glass. The EPR spectra of the recrystallized sample exhibit resonances at the same position, suggesting that the Mn2+ ions are located in sites of highly symmetric crystalline field. The increase of the line intensity of the sextet and the decrease of the background line in the thermal treated samples suggest that the Mn2+ ions move to the highly ordered sites which contribute to the sextet structure. The EPR spectra of the Gd3+ doped glasses exhibit the typical U-spectrum of a s-state ion in a low symmetry site in disordered systems. The EPR of the crystallized glasses, in contrast, have shown a strong resonance in g ≈ 2.0, suggesting Gd3+ ions in environment close to cubic symmetry. The 19F NMR spin-lattice relaxation rates were also strongly influenced by the crystallization process that takes over in samples annealed above Tc. For the glass samples (doped or undoped) the 19F magnetization recoveries were found to be adjusted by an exponential function and the spin-lattice relaxation was characterized by a single relaxation time. In contrast, for the samples treated above Tc, the 19F magnetization-recovery becomes non-exponential. A remarkable feature of our results is that the changes in the Cu2+, Mn2+, Gd3+ EPR spectra and NMR relaxation, are always observed for the samples annealed above Tc. © 2006 Elsevier B.V. All rights reserved.
Resumo:
Acidithiobacillus ferrooxidans is used in bioleaching industrial operations to recover metal ions from mineral sulfides. Chalcopyrite and bornite are copper sulfides that have the same elemental composition, but differ in their susceptibility to the bioleaching process. Our objective was to identify differentially expressed proteins in A. ferrooxidans LR cells exposed to chalcopyrite or bornite, as a sole energy source, for 24 hours. Compared to the control (without minerals), proteins were induced or repressed in planktonic cells after contact with chalcopyrite or bornite by 24 hours. These results demonstrated that the time of exposure to the copper minerals was enough to trigger distinct responses in the A. ferrooxidans metabolism. © 2007 Trans Tech Publications.
Resumo:
The Acidithiobacillus ferrooxidans periplasmic space is known to have proteins involved in the respiratory chains. There are no reports about the expression of the periplasmic proteins in A. ferrooxidans cells attached to chalcopyrite. In this preliminary work, it was compared the periplasmic protein profiles of A. ferrooxidans planktonic and attached cells after exposure to chalcopyrite for 2 hours. The bacterial response to chalcopyrite was investigated by a proteomic approach (two- dimensional gel electrophoresis and mass spectrometry). Four proteins differentially expressed between planktonic and attached cells after exposure to chalcopyrite were identified. Two of these proteins, repressed in chalcopyrite- attached cells, were both identified as superoxide dismutase, whereas the single strand binding protein (SSB) and the PspA/IM30 protein were induced. These results showed that A. ferrooxidans chalcopyrite- attached and planktonic cells show differential expression of the periplasmic proteins and that a proteomic approach can provide a valuable tool to detect proteins related to the A. ferrooxidans response to attachment to the mineral substrates. © (2009) Trans Tech Publications.
Resumo:
It is believed that the dissolution of chalcopyrite (CuFeS2) in acid medium can be accelerated by the addition of Cl- ions, which modify the electrochemical reactions in the leaching system. Electrochemical noise analysis (ENA) was utilized to evaluate the effect of the Cl- ions and Acidithiobacillus ferrooxidans on the oxidative dissolution of a CPE-chalcopyrite (carbon paste electrode modified with chalcopyrite) in acid medium. The emphasis was on the analysis of the admittance plots (Ac) calculated by ENA. In general, a stable passive behavior was observed, mainly during the initial stages of CPE-chalcopyrite immersion, characterized by a low passive current and a low dispersion of the Ac plots, mainly after bacteria addition. This can be explained by the adhesion of bacterial cells on the CPE-chalcopyrite surface acting as a physical barrier. The greater dispersions in the Ac plots occurred immediately after the Cl- ions addition, in the absence of bacteria characterizing an active-state. In the presence of bacteria the addition of Clions only produced some effect after some time due to the barrier effect caused by bacteria adhesion. © (2009) Trans Tech Publications.