974 resultados para Copper Aluminum Silver Alloys


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behavior in 0.5 M H2SO4 at 25 degreesC of a Cu-Al(9.3 wt%)-Ag(4.7 wt%) alloy submitted to different heat treatments and an annealed Cu- Al(9.7 wt%)-Ag(34.2 wt%) were studied by means of open circuit potential (E-mix) measurements, potentiodynamic polarizations and cyclic voltammetry. SEM and EDX microanalysis were used to examine the changes caused by the electrochemical perturbations. The steady state potentials observed for the studied samples were correlated in terms of the phases present in the alloys surface. The resulting E/I potentiodynamic profiles were explained in terms of the potentiodynamic behavior of pure copper and pure silver. The presence of aluminum decreased the extent of copper oxidation. In the apparent Tafel potential region, two anodic Tafel slopes were obtained: 40 mV dec(-1) in the low potential region and 130 mV dec(-1) in the high potential region, which were related with the electrochemical processes involving copper oxidation. (C) 2001 Elsevier B.V. Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrochemical behaviour of Cu, Cu-Al and Cu-Al-Ag alloys in aqueous solutions of NaCl (0.5 M, pH = 3.00) was studied by means of voltammetric methods and electrochemical impedance spectroscopy. The surfaces were examined by SEM and EDX analysis. Cu-Al-Ag alloy shows a potentiodynamic behaviour similar to that of the pure copper electrode while the Cu-Al alloy presents some minor differences. In the active dissolution region the electrodes suffer pitting corrosion and in the other potential regions there are the formation of a passivant film with composition depending on the potential. The impedance responses of the electrodes are discussed. An electrodissolution mechanism is proposed and the effect of the alloying elements upon the impedance response and polarisation curves is explained. The main effects are due to the production of copper and silver chlorides and aluminium oxides/ hydroxides at the corroding interface. The addition of Al or (Al + Ag) increases the corrosion resistance of pure copper. © 1995.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to determine the best annealing temperature at which to age-harden the alloys, hardness tests on speci­men annealed for different lengths of time at different temperatures were made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among the many aluminum alloys which have been studied are the binary copper-aluminum alloys. These have proven to be among the most useful of the alumi­num alloys thus far worked upon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, duralumin and all aluminum alloys have been made the object of much discussion regarding their hardening mechanism. The commercial success of nearly all of the alloys of aluminum and mag­nesium is dependent on their ability to age or precipitation harden.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of aluminum-10 wt pet silicon castings were produced in sand molds to investigate the effect of modification on porosity formation. Modification with individual additions of either strontium or sodium resulted in a statistically significant increase in the level of porosity compared to unmodified castings. The increase in porosity with modification is due to the presence of numerous dispersed pores, which were absent in the unmodified casting. It is proposed that these pores form as a result of differences in size of the aluminum-silicon eutectic grains between unmodified and modified alloys. A geometric model is developed to show how the size of eutectic grains can influence the amount and distribution of porosity. Unlike traditional feeding-based models, which incorporate the effect: of microstructure on permeability, this model considers what happens when liquid is isolated from the riser and can no longer flow. This simple isolation model complements rather than contradicts existing theories on modification-related porosity formation and should be considered in the development of future comprehensive models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of silver additions on the structure and phase transformation of the Cu-13 wt % Al alloy was studied by differential thermal analysis, X-ray diffraction, scanning electron microscopy and energy dispersive analysis of X-rays. The results indicate that the presence of silver modifies the phase-stability field, the transition temperature and the structure of the alloy. These effects are more pronounced for silver concentrations up to 8 wt %.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Age hardening occurs in alloys of the solid solution type containing a hardening constituent, be it metal or metallic compound, which is more soluble in the solvent phase at higher temperatures than at lower ones.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The strain dependence of particle cracking in aluminum alloys A356/357 in the T6 temper has been studied in a range of microstructures produced by varying solidification rate and Mg content, and by chemical (Sr) modification of the eutectic silicon. The damage accumulates linearly with the applied strain for all microstructures, but the rate depends on the secondary dendrite arm spacing and modification state. Large and elongated eutectic silicon particles in the unmodified alloys and large pi-phase (Al9FeMg3Si5) particles in alloy A357 show the greatest tendency to cracking. In alloy A356, cracking of eutectic silicon particles dominates the accumulation of damage while cracking of Fe-rich particles is relatively unimportant. However, in alloy A357, especially with Sr modification, cracking of the large pi-phase intermetallics accounts for the majority of damage at low and intermediate strains but becomes comparable with silicon particle cracking at large strains. Fracture occurs when the volume fraction of cracked particles (eutectic silicon and Fe-rich intermetallics combined) approximates 45 pct of the total particle volume fraction or when the number fraction of cracked particles is about 20 pct. The results are discussed in terms of Weibull statistics and existing models for dispersion hardening.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Additions of strontium to hypoeutectic aluminum-silicon alloys modify the morphology of the eutectic silicon phase from a coarse platelike structure to a fine fibrous structure. Thermal analysis, interrupted solidification, and microstructural examination of sand castings in this work revealed that, in addition to a change in silicon morphology, modification with strontium also causes an increase in the size of eutectic grains. The eutectic grain size increases because fewer grains nucleate, possibly due to poisoning of the phosphorus-based nucleants, that are active in the unmodified alloy. A simple growth model is developed to estimate the interface velocity during solidification of a eutectic grain. The model confirms, independent of microstructural observations, that the addition of 100 ppm strontium increases the eutectic grain size by at least an order of magnitude compared with the equivalent unmodified alloy. The model predicts that the growth velocity varies significantly during eutectic growth. At low strontium levels, these variations may be sufficient to cause transitions between flake and fibrous silicon morphologies depending on the casting conditions. The model can be used to rationally interpret the eutectic grain structure and silicon morphology of fully solidified aluminum-silicon castings and, when coupled with reliable thermal data, can be used to estimate the eutectic grain size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bimetallic alloys are increasingly used in heterogeneous catalysis. This interest is explained by the emergence of new features that are absent in the parent single metals. Synergistic effects between the two combined elements create a more efficient catalyst. One of the most challenging aspect of multicomponent materials in catalysis is the ability to fine-tune the catalytic properties of an alloy by controlling the nature and composition of the surface [1]. For example, the gold/silver alloy combines a high activity and a large selectivity for a broad range of oxidation reaction.It is well established that the surface composition of alloys may deviate from that of the bulk phase. Surface enrichment has also important consequences in some applications of heterogeneous catalysis. In some cases, the thermal and chemical treatments can lead to opposite trends regarding the nature of the metal prone to surface enrichment. Using atom probe tomography we aim to link the physicochemical conditions the composition of the very first atomic layers of bimetallic catalysts and eventually to fine-tune the catalytic features of the latter.