952 resultados para Copper (Cu) sensitive DNAzyme
Resumo:
Functional nucleic acids (FNA), including nucleic acids catalysts (ribozymes and DNAzymes) and ligands (aptamers), have been discovered in nature or isolated in a laboratory through a process called in vitro selection. They are nucleic acids with functions similar to protein enzymes or antibodies. They have been developed into sensors with high sensitivity and selectivity; it is realized by converting the reaction catalyzed by a DNAzyme/ribozyme or the binding event of an aptamer to a fluorescent, colorimetric or electrochemical signal. While a number of studies have been reported for in vitro sensing using DNAzymes or aptamers, there are few reports on in vivo sensing or imaging. MRI is a non-invasive imaging technique; smart MRI contrast agents were synthesized for molecular imaging purposes. However, their rational design remains a challenge due to the difficulty to predict molecular interactions. Chapter 2 focuses on rational design of smart T1-weighted MRI contrast agents with high specificity based on DNAzymes and aptamers. It was realized by changing the molecular weight of the gadolinium conjugated DNA strand with the analytes, which lead to analyte-specific water proton relaxation responses and contrast changes on an MRI image. The designs are general; the high selectivity of FNA was retained. Most FNA-based fluorescent sensors require covalent labeling of fluorophore/quencher to FNAs, which incurrs extra expenses and could interfere the function of FNAs. Chapter 3 describes a new sensor design avoiding the covalent labeling of fluorophore and quencher. The fluorescence of malachite green (MG) was regulated by the presence of adenosine. Conjugate of aptamers of MG and adenosine and a bridge strand were annealed in a solution containing MG. The MG aptamer did not bind MG because of its hybridization to the bridge strand, resulting in low fluorescence signal of MG. The hybridization was weakened in the presence of adenosine, leading to the binding of MG to its aptamer and a fluorescence increase. The sensor has comparable detection limit (20 micromolar) and specificity to its labeled derivatives. Enzymatic activity of most DNAzymes requires metal cations. The research on the metal-DNAzyme interaction is of interest and challenge to scientists because of the lack of structural information. Chapters 4 presents the research on the characterization of the interaction between a Cu2+-dependent DNAzyme and Cu2+. Electron paramagnetic resonance (EPR) and UV-Vis spectroscopy were used to probe the binding of Cu2+ to the DNAzyme; circular dichroism was used to probe the conformational change of the DNAzyme induced by Cu2+. It was proposed that the conformational change by the Cu2+ binding is important for the activity of the DNAzyme. Chapter 5 reports the dependence of the activity of 8-17 DNAzyme on the presence of both Pb2+ and other metal cations including Zn2+, Cd2+ and Mg2+. It was discovered that presence of those metal cations can be cooperative or inhibitive to 8-17 activity. It is hypothesized that the 8-17 DNAzyme had multiple binding sites for metal cations based on the results. Cisplatin is effective killing tumor cells, but with significant side effects, which can be minimized by its targeted delivery. Chapter 6 focuses on the effort to functionalize liposomes encapsulating cisplatin by an aptamer that selectively bind nucleolin, an overexpressed protein by breast cancer cells. The study proved the selective cytotoxicity to breast cancer cells of the aptamer-functionalized liposome.
Resumo:
In Australia, metal-contaminated sites, including those with elevated levels of copper (Cu), are frequently revegetated with endemic plants. Little is known about the responses of Australian plants to excess Cu. Acacia holosericea, Eucalyptus crebra, Eucalyptus camaldulensis, and Melaleuca leucadendra were grown in solution culture with six Cu treatments (0.1 to 40 mu M). While A. holosericea was the most tolerant to excess Cu, all of the species tested were sensitive to excess Cu when compared with exotic tree and agricultural species. The critical external concentrations for toxicity were < 0.7 mu M for all species tested. There was little differentiation between shoot-tissue Cu concentrations in normal versus treated plants, thus, the derivation of critical shoot concentrations was possible only for the most tolerant species, A. holosericea. Critical root Cu concentrations were approximately 210 mu g g(-1) (A. holosericea), 150 mu g g(-1) (E. crebra), 25 mu g g(-1) (E. camaldulensis), and 165 mu g g(-1) (M. leucadendra). These results provide the first comprehensive combination of growth responses, critical concentrations, and toxicity symptoms for three important Australian genera for use in the management of Cu-contaminated sites.
Resumo:
The susceptibility of cattle and buffalos to chronic copper poisoning (CCP) was compared by using cattle (n = 10) and buffalo (n = 10) steers distributed into two copper supplemented (n = 6) and two control (n = 4) groups. Supplemented animals received 2 mg copper (Cu)/kg body weight daily for one week, with an additional 2 mg weekly until the end of the experiment (day 105). Three liver biopsies (day 0, 45, and 105) were obtained for mineral analyses; clinical examinations and blood samples were obtained every 15 days. Three supplemented cattle and two buffalos with typical manifestations of CCP died. There were no differences in the frequency of mortality between cattle and buffalos; hepatic copper concentration was higher in cattle than buffalos. These findings suggest that buffalos and cattle might be equally susceptible to CCP. However, buffalos accumulate less liver copper than cattle and have a lower threshold of hepatic Cu accumulation, which leads to clinical manifestation of CCP. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Different anthropogenic sources of metals can result from agricultural, industrial, military, mining and urban activities that contribute to environmental pollution. Plants can be grown for phytoremediation to remove or stabilize contaminants in water and soil. Copper (Cu), manganese (Mn) and zinc (Zn) are trace essential metals for plants, although their role in homeostasis in plants must be strictly regulated to avoid toxicity. In this review, we summarize the processes involved in the bioavailability, uptake, transport and storage of Cu, Mn and Zn in plants. The efficiency of phytoremediation depends on several factors including metal bioavailability and plant uptake, translocation and tolerance mechanisms. Soil parameters, such as clay fraction, organic matter content, oxidation state, pH, redox potential, aeration, and the presence of specific organisms, play fundamental roles in the uptake of trace essential metals. Key processes in the metal homeostasis network in plants have been identified. Membrane transporters involved in the acquisition, transport and storage of trace essential metals are reviewed. Recent advances in understanding the biochemical and molecular mechanisms of Cu, Mn and Zn hyperaccumulation are described. The use of plant-bacteria associations, plant-fungi associations and genetic engineering has opened a new range of opportunities to improve the efficiency of phytoremediation. The main directions for future research are proposed from the investigation of published results.
Resumo:
To investigate the trace elements (TE) losses and status after trauma, 11 severely injured patients (Injury Severity Score: 29 +/- 6), admitted to the ICU were studied from the day of injury (D0) until D25. Balance studies were started within 24 hours after injury, until D7. Serum and urine samples were collected from D1 to D7, then on D10, 15, 20, and 25. Intravenous TE supplementation was initiated upon admission. SERUM: Selenium (Se) and zinc (Zn) levels were decreased until D7 and were normal thereafter. LOSSES: TE urinary excretions were higher than reference ranges until D20 in all patients. Fluid losses through drains contained large amounts of TE. BALANCES: Balances were slightly positive for copper (Cu) and Zn, and negative for Se from D5 to D7 despite supplements. Cu status exhibited minor changes compared to those observed with the Zn and Se status: Serum levels were decreased and losses increased. Considering the importance of Se and Zn in free radical scavenging, anabolism, and immunity, current recommendations for TE supplements in severely traumatized patients ought to be revised.
Resumo:
The effect of copper (Cu) filtration on image quality and dose in different digital X-ray systems was investigated. Two computed radiography systems and one digital radiography detector were used. Three different polymethylmethacrylate blocks simulated the pediatric body. The effect of Cu filters of 0.1, 0.2, and 0.3 mm thickness on the entrance surface dose (ESD) and the corresponding effective doses (EDs) were measured at tube voltages of 60, 66, and 73 kV. Image quality was evaluated in a contrast-detail phantom with an automated analyzer software. Cu filters of 0.1, 0.2, and 0.3 mm thickness decreased the ESD by 25-32%, 32-39%, and 40-44%, respectively, the ranges depending on the respective tube voltages. There was no consistent decline in image quality due to increasing Cu filtration. The estimated ED of anterior-posterior (AP) chest projections was reduced by up to 23%. No relevant reduction in the ED was noted in AP radiographs of the abdomen and pelvis or in posterior-anterior radiographs of the chest. Cu filtration reduces the ESD, but generally does not reduce the effective dose. Cu filters can help protect radiosensitive superficial organs, such as the mammary glands in AP chest projections.
Resumo:
Bacteria can survive on hospital textiles and surfaces, from which they can be disseminated, representing a source of health care-associated infections (HCAIs). Surfaces containing copper (Cu), which is known for its bactericidal properties, could be an efficient way to lower the burden of potential pathogens. The antimicrobial activity of Cu-sputtered polyester surfaces, obtained by direct-current magnetron sputtering (DCMS), against methicillin-resistant Staphylococcus aureus (MRSA) was tested. The Cu-polyester microstructure was characterized by high-resolution transmission electron microscopy to determine the microstructure of the Cu nanoparticles and by profilometry to assess the thickness of the layers. Sputtering at 300 mA for 160 s led to a Cu film thickness of 20 nm (100 Cu layers) containing 0.209% (wt/wt) polyester. The viability of MRSA strain ATCC 43300 on Cu-sputtered polyester was evaluated by four methods: (i) mechanical detachment, (ii) microcalorimetry, (iii) direct transfer onto plates, and (iv) stereomicroscopy. The low efficacy of mechanical detachment impeded bacterial viability estimations. Microcalorimetry provided only semiquantitative results. Direct transfer onto plates and stereomicroscopy seemed to be the most suitable methods to evaluate the bacterial inactivation potential of Cu-sputtered polyester surfaces, since they presented the least experimental bias. Cu-polyester samples sputtered for 160 s by DCMS were further tested against 10 clinical MRSA isolates and showed a high level of bactericidal activity, with a 4-log(10) reduction in the initial MRSA load (10(6) CFU) within 1 h. Cu-sputtered polyester surfaces might be of use to prevent the transmission of HCAI pathogens.
Resumo:
Successive applications of pig slurry and pig deep litter may lead to an accumulation of copper (Cu) and zinc (Zn) fractions in the soil profile. The objective of this study was to evaluate the Cu and Zn forms and accumulation in a Sandy Typic Hapludalf soil after long-term application of pig slurry and deep litter. In March 2010, eight years after initiating an experiment in Braço do Norte, Santa Catarina (SC), Brazil, on a Sandy Typic Hapludalf soil, soil samples were collected from the 0-2.5, 2.5-5.0, 5-10 and 10-15 cm layers in treatments consisting of no manure application (control) and with applications of pig slurry and deep litter at two levels: the single and double rate of N requirement for maize and black oat succession. The soil was dried, ground in an agate mortar and analyzed for Cu and Zn contents by 0.01 mol L-1 EDTA and chemically fractionated to determine Cu and Zn. The applications of Pig deep litter and slurry at doses equivalent to 90 kg ha-1 N increased the contents of available Cu and Zn in the surface soil layer, if the double of this dose was applied in pig deep litter or double this dose in pig slurry, Cu and Zn migrated to a depth of 15 cm. Copper is accumulated mainly in the organic and residual fractions, and zinc preferentially in the fraction linked to clay minerals, especially in the surface soil layers.
Resumo:
Alternative copper (Cu) sources could be used in fertilizer production, although the bioavailability of copper in these materials is unknown. The objective of this study was to evaluate the extractants neutral ammonium citrate (NAC), 2 % citric acid, 1 % acetic acid, 10 % HCl, 10 % H2SO4, buffer solution pH 6.0, DTPA, EDTA, water, and hot water in the quantification of available Cu content in several sources, relating them to the relative agronomic efficiency (RAE) of wheat grown in a clayey Latossolo Vermelho eutrófico (Oxisol) and Neossolo Quartzarênico (Typic Quartzipsamment). Copper was applied at the rate of 1.5 mg kg-1 as scrap slag, brass slag, Cu ore, granulated copper, and copper sulfate. The extractants 10 % HCl, 10 % H2SO4, and NAC extracted higher Cu concentrations. The RAE values of brass slag and Cu ore were similar to or higher than those of Cu sulfate and granulated Cu. Solubility in the 2nd NAC extractant, officially required for mineral fertilizers with Cu, was lower than 60 % for the scrap slag, Cu ore, and granulated copper sources. This fact indicates that adoption of the NAC extractant may be ineffective for industrial by-products, although no extractant was more efficient in predicting Cu availability for wheat fertilized with the Cu sources tested.
Resumo:
Tässä työssä on tutkittu kuparin (510)-askelpinnan reaktiivisuutta käyttäen apuna kvanttimekaanisia ab initio laskentamenetelmiä. Tutkimus on toteutettu laskemalla happiatomin adsorptioenergia ja tilatiheys erilaisissa potentiaalisissa adsorptiopaikoissa pinnalla. Myös happimolekyylin adsorptiota ja hajoamista ontarkasteltu laskemalla pintaa lähestyvälle molekyylille potentiaalienergiapintoja. Energiapintojen tuloksia on myös täydennetty kvanttimekaanisilla molekyylidynamiikkalaskuilla. Metallisia askelpintoja pidetään yleisesti sileitä pintoja reaktiivisempina happea kohtaan, johtuen askeleen reunan pienentävästä vaikutuksesta molekyylin hajoamisen tiellä olevaan energiavaliin. On kuitenkin olemassa myös tuloksia, jotka osoittavat hapen tarttumisprosessin olevan hallitseva juuri terassialueella, askeleen reunan sijasta. Tässä työssä on todettu hapen adsorboituvan Cu(510)-pinnalla tehokkaimmin juuri terassilla olevaan hollow-paikkaan. Myös adsorptioenergiat ovat tällä pinnalla pienempiä kuin sileällä (100)-pinnalla. Potentiaalienergiapintojen perusteella Cu(510)-pinnan todetaan myös olevan vähemmän reaktiivinen kuin askelpintojen yleisesti odotetaan olevan, vaikka askeleen reunan todetaankin pienentävän happiatominhajoamisen esteenä olevaa energiavallia.
Resumo:
Kuparipinnan hapettumisen alkuvaiheet ovat vielä nykyisin tutkijoille epäselviä. Kuitenkin, jotta hapettumisprosessia voitaisiin säädellä, on sangen tärkeää ymmärtää mistä varsinainen hapettuminen lähtee liikkeelle ja mitkä ovat hapettumisen seuraavat vaiheet. Tähän kysymykseen haetaan vastauksia tässä työssä käyttäen puhtaasti teoreettisia menetelmiä pinnan käsittelyssä. Aikaisempien teoreettisten ja kokeellisten tutkimusten välillä on pieni ristiriita liittyen hapen tarttumistodennäköisyyteen. Teoreettisten tutkimusten mukaan happi ei puhtaalle pinnalle tullessaan näe potentiaalivallia, mutta kokeelliset tutkimukset osoittavat sellaisen kuitenkin olevan. Tuohon ristiriitaan pureudutaan käyttäen aikaisemmista laskuista poikkeavaa kvanttimekaaniseen molekyylidynamiikkaan perustuvaa lähestymistapaa. Työssä havaitaan, että aikaisemmin yleisesti käytetty menetelmä hukkaa huomattavan määrän tietoa ja siten tutkijat eivät voi ainoastaan tyytyä tarkastelemaan kyseisellä menetelmällä saatuja tuloksia. Kuparipinnalle havaittiin, että korkeilla molekyylin kineettisen energian arvolla aikaisemmin suoritetut laskut hajottavista trajektoreista pitävät paikkansa, mutta matalilla kineettisen energian arvoilla molekyyli kohtaa erittäin voimakkaan ``steering'' vaikutuksen ja trajektorit joiden piti olla hajottavia johtavatkin molekulaariseen adsorptioon. Kun hapen konsentraatio pinnalla on suurempi kuin 0.5 ML, pinta rekonstruoituu. Myös rekonstruktion jälkeistä pintaa on tutkittu samanlaisilla menetelmillä kuin puhdasta pintaa. Rekonstruoituneelle pinnalle ei löydetty hajottavia trajektoreita ja havaittiin, että hapelle annetun kineettisen energian matalilla arvoilla myös tässä tapauksessa on erittäin voimakas ``steering'' vaikutus.
Resumo:
A study was conducted to evaluate the predictive diagnostic value of different copper (Cu) parameters as indicators of average daily gain (ADG) in growing calves. The effects in calves of cow Cu supplementation in the last one-third gestation period were also evaluated. Five supplementation trials, with a total of 300 calves, were carried out. Two groups of 30 calves were randomly assigned to each trial, one group was parenterally supplemented (SG) and the other was not supplemented (NSG). Trials began when calves were three-month-old and ended at weaning time. At each sampling calves were weighed and blood was taken to determine Cu concentrations in plasma, Whole Blood (WB), Red Cells (RC) and Packed Cell Volume (PCV). Liver samples from six animals of each group were taken both at the beginning and at the end of the trial. In two trials the mothers of the SG received Cu supplementation at the last one- third gestation period. Four of the five trials exhibited low ADG in the NSGs. In these groups, plasma Cu concentration decreased rapidly before low ADG was detected, which occurred with values remaining below 25µg/dl. The decrease of RC Cu concentration was considerably slow. WB showed an intermediate position. PCV in the SGs was higher than in the NSGs in all trials. Cow supplementation was insufficient to generate a liver storage able to last after calves reached the 3 months of age. These data could be useful to predict the risk of low ADG in grazing calves.
Resumo:
The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu) concentration in clinical cases of acute copper poisoning (ACP). A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million) was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.
Resumo:
Three species of phylogenetically related semi-terrestrial crabs (Superfamily Grapsoidea - Sesarma rectum, Goniopsis cruentata and Neohelice granulata (formerly: Chasmagnathus granulatus) with different degrees of terrestriality were studied to quantify the accumulation of copper (Cu) in hemolymph, gills, hepatopancreas and antennal gland, and its excretion through the faeces. These crabs were fed for 15 days practical diets containing 0 (A), 0.5 (B), 1.0 (C), and 1.5% (D) of added CuCl2 (corresponding to 0, 0.2, 0.5 and 0.7% of Cu2+, respectively). The amount of food ingested was directly proportional to the degree of terrestriality: S. rectum, the most terrestrial species, ate around 2-3 times more than the other crabs, whereas G. cruentata ate 1.5-2 times more than N. granulata, the least terrestrial. The amount of Cu excreted in the feces was proportional to Cu ingestion, and was 76.8% and 64.2% higher for Sesarma fed diet D compared to G. cruentata and N. granulata, respectively. Sesarma also displayed higher Cu concentration in the haemolymph, gills and antennal glands, but not in the hepatopancreas. A detoxifying mechanism followed by elimination was probably present at this last organ, preventing Cu accumulation. More terrestrial crabs, such as Sesarma, may accumulate more Cu in hemolymph and tissues, showing a correlation between metal accumulation and increased terrestriality. In this aspect, contaminated feed sources with Cu may have more impact in conservation of terrestrial crabs. (C) 2008 Elsevier Inc. All rights reserved.