5 resultados para Copiapite
Resumo:
The occurrence of a copiapite in the Paleogenic (?) formations of Vale Furado (South of S. Pedro de Muel, Portugal) is described, X-ray, DTA and TGA data and a chemical analysis of this mineral are presented.
Resumo:
The occurrence of a copiapite in the Paleogenic (?) formations of Vale Furado (South of S. Pedro de Muel, Portugal) is described, X-ray, DTA and TGA data and a chemical analysis of this mineral are presented.
Resumo:
The soluble metal sulphate salts melanterite, rozenite, rhomboclase, szornolnokite, copiapite, coquimbite, hexahydrite and halotrichite, together with gypsum, have been identified, some for the first time oil the banks of the Rio Tinto, SW Spain. Secondary Fe-sulphate minerals call form directly from evaporating acid, sulphate-rich Solutions as a result of pyrite oxidation. Chemical analyses of mixtures of these salt minerals indicate concentrations of Fe (up to 31 wt.%), Mg (up to 4 wt.%), Cu (up to 2 wt.%) and Zn (up to wt.%). These minerals are shown to act as transient storage Cor metals and can store on average up to 10% (9.5 - 11%) and 22% (20-23%) Zn and Cu respectively, of the total discharge of the Rio Tinto during the summer period. Melanterite and rozenite precipitates at Rio Tinto are only found in association with very acidic drainage waters (pH <1.0) draining directly from pyritic waste piles. Copiapite precipitates abundantly oil the banks of the Rio Tinto by (1) direct evaporation of the river water; or (2) as part of a paragenetic sequence with the inclusion of minor halotrichite, indicating natural dehydration and decomposition. The natural occurrences are comparable with the process of paragenesis from the evaporation of Rio Tinto river water under laboratory experiments resulting in the formation of aluminocopiapite, halotrichite, coquimbite, voltaite and gypsum.
Resumo:
The acid weathering of pyrite-bearing Pennsylvanian clastic sedimentary rocks in southeastern Nebraska locally produces the secondary sulfate minerals alunogen, copiapite, epsomite, felsobanyaite/basaluminite, gypsum, halotrichite, jarosite, rozenite, and slavikite. Of these mineral occurrences, four are first-time discoveries in the state or the surrounding region. Slavikite (NaMg2Fe5 (S04)7 (OH) 6• 33H20), which has been reported only once before in North America and from a handful of sites in Europe and South America, was found in abundance at an outcrop at Brownville, NE. The pH values in 1:1 solutions of deionized water of the studied minerals, excluding epsomite, range from 1.94 to 4.82. Therefore, segregations of secondary minerals in themselves are significant microenvironmental reservoirs of acid that can be mobilized during precipitation events. Because of its role in liberating and concentrating ions such as Al3+, Fe2+, Fe3+, Mg3+, and SO42-, acid rock weathering should be considered in local to regional assessments of surface-water and groundwater chemistry. Observations also suggest that rock weathering by the growth of sulfate salts is a potential factor in local hillslope development, one that has not previously been considered in the study area.
Resumo:
The Richmond Mine of the Iron Mountain copper deposit contains some of the most acid mine waters ever reported. Values of pH have been measured as low as −3.6, combined metal concentrations as high as 200 g/liter, and sulfate concentrations as high as 760 g/liter. Copious quantities of soluble metal sulfate salts such as melanterite, chalcanthite, coquimbite, rhomboclase, voltaite, copiapite, and halotrichite have been identified, and some of these are forming from negative-pH mine waters. Geochemical calculations show that, under a mine-plugging remediation scenario, these salts would dissolve and the resultant 600,000-m3 mine pool would have a pH of 1 or less and contain several grams of dissolved metals per liter, much like the current portal effluent water. In the absence of plugging or other at-source control, current weathering rates indicate that the portal effluent will continue for approximately 3,000 years. Other remedial actions have greatly reduced metal loads into downstream drainages and the Sacramento River, primarily by capturing the major acidic discharges and routing them to a lime neutralization plant. Incorporation of geochemical modeling and mineralogical expertise into the decision-making process for remediation can save time, save money, and reduce the likelihood of deleterious consequences.