992 resultados para Coordinated bidding strategy
Resumo:
This paper presents a stochastic mixed-integer linear programming approach for solving the self-scheduling problem of a price-taker thermal and wind power producer taking part in a pool-based electricity market. Uncertainty on electricity price and wind power is considered through a set of scenarios. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. An efficient mixed-integer linear program is presented to develop the offering strategies of the coordinated production of thermal and wind energy generation, having as a goal the maximization of profit. A case study with data from the Iberian Electricity Market is presented and results are discussed to show the effectiveness of the proposed approach.
Resumo:
The aim of this paper is to suggest a simple methodology to be used by renewable power generators to bid in Spanish markets in order to minimize the cost of their imbalances. As it is known, the optimal bid depends on the probability distribution function of the energy to produce, of the probability distribution function of the future system imbalance and of its expected cost. We assume simple methods for estimating any of these parameters and, using actual data of 2014, we test the potential economic benefit for a wind generator from using our optimal bid instead of just the expected power generation. We find evidence that Spanish wind generators savings would be from 7% to 26%.
Resumo:
This paper deals with the problem of coordinated trading of wind and photovoltaic systems in order to find the optimal bid to submit in a pool-based electricity market. The coordination of wind and photovoltaic systems presents uncertainties not only due to electricity market prices, but also with wind and photovoltaic power forecast. Electricity markets are characterized by financial penalties in case of deficit or excess of generation. So, the aim o this work is to reduce these financial penalties and maximize the expected profit of the power producer. The problem is formulated as a stochastic linear programming problem. The proposed approach is validated with real data of pool-based electricity market of Iberian Peninsula.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modeled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
The variability in non-dispatchable power generation raises important challenges to the integration of renewable energy sources into the electricity power grid. This paper provides the coordinated trading of wind and photovoltaic energy assisted by a cyber-physical system for supporting management decisions to mitigate risks due to the wind and solar power variability, electricity prices, and financial penalties arising out the generation shortfall and surplus. The problem of wind-photovoltaic coordinated trading is formulated as a stochastic linear programming problem. The goal is to obtain the optimal bidding strategy that maximizes the total profit. The wind-photovoltaic coordinated operation is modelled and compared with the uncoordinated operation. A comparison of the models and relevant conclusions are drawn from an illustrative case study of the Iberian day-ahead electricity market.
Resumo:
A multivariate approach to bidding strategy is presented in comparison with previous standard approaches. An optimal formulation is derived and a method of parameter estimation proposed. A case study illustrates the derivation of optimal and other strategic mark up values against a single bidder. Concluding remarks concern extensions to multiple competitors differing levels of information, and sensitivity analysis.
Resumo:
In this paper, we address a key problem faced by advertisers in sponsored search auctions on the web: how much to bid, given the bids of the other advertisers, so as to maximize individual payoffs? Assuming the generalized second price auction as the auction mechanism, we formulate this problem in the framework of an infinite horizon alternative-move game of advertiser bidding behavior. For a sponsored search auction involving two advertisers, we characterize all the pure strategy and mixed strategy Nash equilibria. We also prove that the bid prices will lead to a Nash equilibrium, if the advertisers follow a myopic best response bidding strategy. Following this, we investigate the bidding behavior of the advertisers if they use Q-learning. We discover empirically an interesting trend that the Q-values converge even if both the advertisers learn simultaneously.
Resumo:
Electricity markets in the United States presently employ an auction mechanism to determine the dispatch of power generation units. In this market design, generators submit bid prices to a regulation agency for review, and the regulator conducts an auction selection in such a way that satisfies electricity demand. Most regulators currently use an auction selection method that minimizes total offer costs ["bid cost minimization" (BCM)] to determine electric dispatch. However, recent literature has shown that this method may not minimize consumer payments, and it has been shown that an alternative selection method that directly minimizes total consumer payments ["payment cost minimization" (PCM)] may benefit social welfare in the long term. The objective of this project is to further investigate the long term benefit of PCM implementation and determine whether it can provide lower costs to consumers. The two auction selection methods are expressed as linear constraint programs and are implemented in an optimization software package. Methodology for game theoretic bidding simulation is developed using EMCAS, a real-time market simulator. Results of a 30-day simulation showed that PCM reduced energy costs for consumers by 12%. However, this result will be cross-checked in the future with two other methods of bid simulation as proposed in this paper.
Resumo:
This paper deals with the self-scheduling problem of a price-taker having wind and thermal power production and assisted by a cyber-physical system for supporting management decisions in a day-ahead electric energy market. The self-scheduling is regarded as a stochastic mixed-integer linear programming problem. Uncertainties on electricity price and wind power are considered through a set of scenarios. Thermal units are modelled by start-up and variable costs, furthermore constraints are considered, such as: ramp up/down and minimum up/down time limits. The stochastic mixed-integer linear programming problem allows a decision support for strategies advantaging from an effective wind and thermal mixed bidding. A case study is presented using data from the Iberian electricity market.
Resumo:
This paper presents a computer application for wind energy bidding in a day-ahead electricity market to better accommodate the variability of the energy source. The computer application is based in a stochastic linear mathematical programming problem. The goal is to obtain the optimal bidding strategy in order to maximize the revenue. Electricity prices and financial penalties for shortfall or surplus energy deliver are modeled. Finally, conclusions are drawn from an illustrative case study, using data from the day-ahead electricity market of the Iberian Peninsula.
Resumo:
Aerosols affect the Earth's energy budget directly by scattering and absorbing radiation and indirectly by acting as cloud condensation nuclei and, thereby, affecting cloud properties. However, large uncertainties exist in current estimates of aerosol forcing because of incomplete knowledge concerning the distribution and the physical and chemical properties of aerosols as well as aerosol-cloud interactions. In recent years, a great deal of effort has gone into improving measurements and datasets. It is thus feasible to shift the estimates of aerosol forcing from largely model-based to increasingly measurement-based. Our goal is to assess current observational capabilities and identify uncertainties in the aerosol direct forcing through comparisons of different methods with independent sources of uncertainties. Here we assess the aerosol optical depth (τ), direct radiative effect (DRE) by natural and anthropogenic aerosols, and direct climate forcing (DCF) by anthropogenic aerosols, focusing on satellite and ground-based measurements supplemented by global chemical transport model (CTM) simulations. The multi-spectral MODIS measures global distributions of aerosol optical depth (τ) on a daily scale, with a high accuracy of ±0.03±0.05τ over ocean. The annual average τ is about 0.14 over global ocean, of which about 21%±7% is contributed by human activities, as estimated by MODIS fine-mode fraction. The multi-angle MISR derives an annual average AOD of 0.23 over global land with an uncertainty of ~20% or ±0.05. These high-accuracy aerosol products and broadband flux measurements from CERES make it feasible to obtain observational constraints for the aerosol direct effect, especially over global the ocean. A number of measurement-based approaches estimate the clear-sky DRE (on solar radiation) at the top-of-atmosphere (TOA) to be about -5.5±0.2 Wm-2 (median ± standard error from various methods) over the global ocean. Accounting for thin cirrus contamination of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination. A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.
Resumo:
A dissertação tem como objetivo analisar dois aspectos do processo de bookbuilding nas emissões de debêntures no mercado brasileiro. O primeiro aspecto é verificar se o underwriter utiliza, a exemplo do que ocorre no Initial Public Offering (IPO) de ações, o poder discricionário nas alocações das debêntures entre os investidores. O segundo consiste em encontrar as características, tanto do emissor quanto do investidor, que influenciam na eficiência do bidder no processo de bookbuilding. Para realizar os testes empíricos foi utilizada uma base de dados composta por 40 books1 (totalizando 727 bids) fornecidos por um banco de investimento.Verifica-se que o underwriter não beneficia nenhum investidor na alocação final das debêntures. Essa afirmação fica evidenciada quando se calcula a diferença entre alocação final (efetivamente recebida pelo investidor) e alocação teórica (estimada com base no método pro-rata) para os 27 books (totalizando 557 bids) que apresentam demanda superior a oferta. A diferença é nula para 96.6% da amostra, sendo que das 19 observações não nulas, 15 possuem diferença absoluta de uma debênture entre a alocação teórica e a final, resultado explicado em função do arredondamento das alocações.Contrariando a teoria de leilão de titulos públicos, onde autores, como Scott and Wolf (1979), defendem que os investidores devem utilizar o step bid como estratégia ótima de bid, este trabalho verificou que no caso de bookbuilding de debêntures no mercado brasileiro, os investidores usuários de step bid posssuem menos chances de ter seu bid atendido plenamente pelo underwriter. Quando o investidor é um gestor de recursos de terceiros (asset management), aumenta-se a possibilidade de ter sua demanda atendida. O maior sucesso do asset management no bookbuilding deve-se às peculiaridades do mercado brasileiro: (i) somente investidores locais participam dos bookbuilding, já que investidores estrangeiros possuem preferência e incentivos por títulos públicos; (ii) gestores de recursos de terceiros representam 75% da demanda por debêntures; (iii) o mercado de gestão de recursos é concentrado: os 5 maiores gestores concentram 60% da indústria. Com isso os gestores de recursos podem desenvolver uma expertise própria, já que são os principais demandadores e frequentemente participam dos bookbuilding. As características do emissor também influenciam no desempenho dos bidders: as debêntures de baixo e médio risco aumentam a possibilidade do bidder ter seu pedido atendido na íntegra. Além disso, como era esperado, quanto maior for a demanda do título, mais dificil é para o investor conseguir a quantidade desejável.
Resumo:
We examine the role of seller bidding and reserve prices in an infinitely repeated independent-private-value (IPV) ascending-price auction. The seller has a single object that she values at zero. At the end of any auction round, she may either sell to the highest bidder or pass-in the object and hold a new auction next period. New bidders are drawn randomly in each round. The ability to re-auction motivates a notion of reserve price as the option value of retaining the object for re-auctioning. Even in the absence of a mechanism with which to commit to a reserve price, the optimal “secret” reserve is shown to exceed zero. However, despite the infinite repetition, there may be significant value to the seller from a binding reserve price commitment: the optimal binding reserve is higher than the optimal “secret” reserve, and may be substantially so, even with very patient players. Furthermore, reserve price commitments may even be socially preferable at high discount factors. We also show that the optimal “phantom” bidding strategy for the seller is revenue-equivalent to a commitment to an optimal public reserve price.