742 resultados para Cooperatively Breeding Birds
Resumo:
The Noisy Miner Manorina melanocephala (Meliphagidae) is a cooperatively breeding bird species in which sons often remain on their natal home ranges and help one or both of their parents. In a population of Noisy Miners in SE Queensland, Australia, a molecular technique was used to explore adult and offspring sex ratios. and also hatching sequences. Among the adult population, there were 2.31 males for every female, and roughly 99% of helping was performed by males. At hatching and fledging, the population sex ratio was even, with exactly 57 males and 57 females. However, in 17 out of 18 broods the first egg to hatch was male, First-hatched males were significantly larger and heavier than their sisters just prior to fledging. Through their helping behaviour, large healthy sons could clearly enhance the future reproductive success of parents. and benefit the entire group. Sex-biased hatching sequences could potentially provide cooperatively breeding birds with a subtle and precise way of varying investment in the helping sex.
Resumo:
1. Between 1988 and 2001, we studied social relationships in the superb fairy-wren Malurus cyaneus (Latham), a cooperative breeder with male helpers in which extra-group fertilizations are more common than within-pair fertilizations. 2. Unlike other fairy-wren species, females never bred on their natal territory. First-year females dispersed either directly from their natal territory to a breeding vacancy or to a foreign 'staging-post' territory where they spent their first winter as a subordinate. Females dispersing to a foreign territory settled in larger groups. Females on foreign territories inherited the territory if the dominant female died, and were sometimes able to split the territory into two by pairing with a helper male. However, most dispersed again to obtain a vacancy. 3. Females dispersing from a staging post usually gained a neighbouring vacancy, but females gaining a vacancy directly from their natal territory travelled further, perhaps to avoid pairing or mating with related males. 4. Females frequently divorced their partner, although the majority of relationships were terminated by the death of one of the pair. If death did not intervene, one-third of pairings were terminated by female-initiated divorce within 1000 days. 5. Three divorce syndromes were recognized. First, females that failed to obtain a preferred territory moved to territories with more helpers. Secondly, females that became paired to their sons when their partner died usually divorced away from them. Thirdly, females that have been in a long relationship divorce once a son has gained the senior helper position. 6. Dispersal to avoid pairing with sons is consistent with incest avoidance. However, there may be two additional benefits. Mothers do not mate with their sons, so dispersal by the mother liberates her sons to compete for within-group matings. Further, divorcing once their son has become a breeder or a senior helper allows the female to start sons in a queue for dominance on another territory. Females that do not take this option face constraints on their ability to recruit more sons into the local neighbourhood.
Resumo:
Within cooperative societies, group members share in caring for offspring. Although division of labour among group members has been relatively well studied in insects, less is known about vertebrates. Most studies of avian helping focus solely on the extent to which helpers provision the offspring, however, helpers can participate in everything from nest building to predator defence. Bad provisioners may, for example, not be as 'uncooperative' as they appear. if they are good defenders. Thus, the distribution of helping tasks between group members should have important implications for our interpretation of group dynamics. Here, we compare two distinct forms of helping behaviour in the cooperatively breeding noisy miner (Manorina melanocephala): chick provisioning and mobbing nest predators. We show that the way in which individual helpers invest in these two helping behaviours varies enormously across individuals and among social groups. Good provisioners often contributed relatively little to mobbing and vice versa. Indeed, (18%) of helpers only mobbed, 22% just provisioned, whereas 60% of helpers performed both forms of helping. Across nests, provisioning was significantly negatively correlated with mobbing effort. We suggest that small differences in the costs or benefits of different aspects of helping (due to differences in age, relatedness or social status) have a big impact on the division of labour within a group. Consequently, social groups can be made up from individuals who often specialise in one helping behaviour, and/or helpers who perform a number of behaviours to differing degrees. Division of labour within social groups will, therefore, have important consequences for the maintenance of cooperatively breeding in vertebrates.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
The greenhead ant Rhytidoponera metallica has long been recognized as posing a potential challenge to kin selection theory because it has large queenless colonies where apparently many of the morphological workers are mated and reproducing. However this species has never been studied genetically and important elements of its breeding system and kin structure remain uncertain. We used microsatellite markers to measure the relatedness among nestmates unravel the fine-scale population genetic structure and infer the breeding system of R. metallica. The genetic relatedness among worker nestmates is very low but significantly greater than zero (r = 0.082 +/- 0.015) which demonstrates that nests contain many distantly related breeders. The inbreeding coefficient is very close to and not significantly different from zero indicating random mating and lack of microgeographic genetic differentiation. On average. closely located nests are not more similar genetically than distant nests which is surprising as new colonies form by budding and female dispersal is restricted. Lack of inbreeding and absence of population viscosity indicates high gene flow mediated by males. Overall the genetic pattern detected in R. metallica suggests that a high number of moderately related workers mate with unrelated males from distant nests. This breeding system results in the lowest relatedness among nestmates reported for social insect species where breeders and helpers are not morphologically differentiated. [References: 69]
Resumo:
Data about breeding populations of birds in the Antarctica are rare and fragmented. Thus, information about the status of the breeding populations of Antarctic birds is crucial given the current scenario of climate change, which is particularly acute in Antarctica. This paper presents new information about the populations of the Antarctic tern Sterna vittata, the kelp gull Larus dominicanus, the southern giant petrel Macronectes giganteus, the Antarctic skua Catharacta antarctica lonnbergi, the chinstrap penguin Pygoscelis antarctica and the gentoo penguin Pygoscelis papua on Byers Peninsula (Livingston Island, South Shetland Islands). We used line transects counts to estimate both densities and numbers of nests of the different species. We estimate that there are 398.96 birds km-2 of southern giant petrels (2793 individuals), 62.4 birds km-2 of Antarctic tern (3746 individuals) and 269.1 birds km-2 of kelp gull (1884 individuals). Furthermore, we found 15 nests of Antarctic skua in 25 km2, from which we can estimate that 6091 birds must breed on Byers Peninsula. We also censused two colonies of gentoo penguins (3000 and 1200 pairs) and 50 pairs of chinstrap. Compared to previous estimates, gentoo penguins seem to have increased whereas chinstrap penguin have decreased. Finally, the populations of Antarctic tern, southern giant petrel and kelp gull have stabilized or slightly increased.
Resumo:
Silvicultural treatments have been shown to alter the composition of species assemblages in numerous taxa. However, the intensity and persistence of these effects have rarely been documented. We used a before-after, control-impact (BACI) paired design, i.e., five pairs of 25-ha study plots, 1-control and 1-treated plot, to quantify changes in the density of eight forest bird species in response to selection harvesting over six breeding seasons, one year pre- and five years postharvest. Focal species included mature forest associates, i.e., Northern Parula (Setophaga americana) and Black-throated Green Warbler (Setophaga virens), forest generalists, i.e., Yellow-bellied Sapsucker (Sphyrapicus varius) and Swainson’s Thrush (Catharus ustulatus), early-seral specialists, i.e., Mourning Warbler (Geothlypis philadelphia) and Chestnut-sided Warbler (Setophaga pensylvanica), species associated with shrubby forest gaps, i.e., Black-throated Blue Warbler (Setophaga caerulescens), and mid-seral species, i.e., American Redstart (Setophaga ruticilla). As predicted, we found a negative numerical response to the treatment in the Black-throated Green Warbler, no treatment effect in the Yellow-bellied Sapsucker, and a positive treatment effect in early-seral specialists. We only detected a year effect in the Northern Parula and the American Redstart. There was evidence for a positive treatment effect on the Swainson’s Thrush when the regeneration started to reach the pole stage, i.e., fifth year postharvest. These findings suggest that selection harvesting has the potential to maintain diverse avian assemblages while allowing sustainable management of timber supply, but future studies should determine whether mature-forest associates can sustain second- and third-entry selection harvest treatments.
Resumo:
Background We manipulated predation risk in a field experiment with the cooperatively breeding cichlid Neolamprologus pulcher by releasing no predator, a medium- or a large-sized fish predator inside underwater cages enclosing two to three natural groups. We assessed whether helpers changed their helping behaviour, and whether within-group conflict changed, depending on these treatments, testing three hypotheses: ‘pay-to-stay’ PS, ‘risk avoidance’ RA, or (future) reproductive benefits RB. We also assessed whether helper food intake was reduced under risk, because this might reduce investments in other behaviours to save energy. Methodology/Principal Findings Medium and large helpers fed less under predation risk. Despite this effect helpers invested more in territory defence, but not territory maintenance, under the risk of predation (supporting PS). Experimentally covering only the breeding shelter with sand induced more helper digging under predation risk compared to the control treatment (supporting PS). Aggression towards the introduced predator did not differ between the two predator treatments and increased with group member size and group size (supporting PS and RA). Large helpers increased their help ratio (helping effort/breeder aggression received, ‘punishment’ by the dominant pair in the group) in the predation treatments compared to the control treatment, suggesting they were more willing to PS. Medium helpers did not show such effects. Large helpers also showed a higher submission ratio (submission/ breeder aggression received) in all treatments, compared to the medium helpers (supporting PS). Conclusions/Significance We conclude that predation risk reduces helper food intake, but despite this effect, helpers were more willing to support the breeders, supporting PS. Effects of breeder punishment suggests that PS might be more important for large compared to the medium helpers. Evidence for RA was also detected. Finally, the results were inconsistent with RB.
Resumo:
Mothers should adjust the size of propagules to the selective forces to which these offspring will be exposed. Usually, a larger propagule size is favored when young are exposed to high mortality risk or conspecific competition. Here we test 2 predictions on how egg size should vary with these selective agents. When offspring are cared for by parents and/or alloparents, protection may reduce the predation risk to young, which may allow mothers to invest less per single offspring. In the cooperatively breeding cichlid Neolamprologus pulcher, brood care helpers protect group offspring and reduce the latters' mortality rate. Therefore, females are expected to reduce their investment per egg when more helpers are present. In a first experiment, we tested this prediction by manipulating the helper number. In N. pulcher, helpers compete for dispersal opportunities with similar-sized individuals of neighboring groups. If the expected future competition pressure on young is high, females should increase their investment per offspring to give them a head start. In a second experiment, we tested whether females produce larger eggs when perceived neighbor density is high. Females indeed reduced egg size with increasing helper number. However, we did not detect an effect of local density on egg size, although females took longer to produce the next clutch when local density was high. We argue that females can use the energy saved by adjusting egg size to reduced predation risk to enhance future reproductive output. Adaptive adjustment of offspring size to helper number may be an important, as yet unrecognized, strategy of cooperative breeders.