958 resultados para Cooling ponds
Resumo:
"March 1982."
Resumo:
"December 1982."
Resumo:
"Aquatic Biology technical report 1984(5)."
Resumo:
A novel capillary electrophoresis method using capacitively coupled contactless conductivity detection is proposed for the determination of the biocide tetrakis(hydroxymethyl)phosphonium sulfate. The feasibility of the electrophoretic separation of this biocide was attributed to the formation of an anionic complex between the biocide and borate ions in the background electrolyte. Evidence of this complex formation was provided by (11) B NMR spectroscopy. A linear relationship (R(2) = 0.9990) between the peak area of the complex and the biocide concentration (50-900 μmol/L) was found. The limit of detection and limit of quantification were 15.0 and 50.1 μmol/L, respectively. The proposed method was applied to the determination of tetrakis(hydroxymethyl)phosphonium sulfate in commercial formulations, and the results were in good agreement with those obtained by the standard iodometric titration method. The method was also evaluated for the analysis of tap water and cooling water samples treated with the biocide. The results of the recovery tests at three concentration levels (300, 400, and 600 μmol/L) varied from 75 to 99%, with a relative standard deviation no higher than 9%.
Resumo:
A capillary zone electrophoresis (CE) method was developed for the determination of the biocide 2,2-dibromo-3-nitrilo-propionamide (DBNPA) in water used in cooling systems. The biocide is indirectly determined by CE measurement of the concentration of bromide ions produced by the reaction between the DBNPA and bisulfite. The relationship between the bromide peak areas and the DBNPA concentrations showed a good linearity and a coefficient of determination (R(2)) of 0.9997 in the evaluated concentration range of 0-75 μmol L(-1). The detection and quantification limits for DBNPA were 0.23 and 0.75 μmol L(-1), respectively. The proposed CE method was successfully applied for the analysis of samples of tap water and cooling water spiked with DBNPA. The intra-day and inter-day (intermediary) precisions were lower than 2.8 and 6.2%, respectively. The DBNPA concentrations measured by the CE method were compared to the values obtained by a spectrophotometric method and were found to agree well.
Resumo:
BACKGROUND: This work deals with the xylitol production by biotechnological routes emphasizing the purification process using crystallization. RESULTS: Xylitol volumetric productivity of 0.665 g L(-1) h(-1) and yield of 0.7024 g g(-1) were obtained after 92 h fermentation. The fermented broth (61.3 g L(-1) xylitol) was centrifuged, treated and concentrated obtain a syrup (745.3 g L(-1) xylitol) which was crystallized twice, xylitol crystals with 98.5-99.2% purity being obtained. CONCLUSION: The hypothetical distribution obtained permits the determination of modeling parameters, which make possible the estimation of crystal dominant size from different initial experimental conditions. (C) 2008 Society of Chemical Industry
Resumo:
High-purity niobium powder can be produced via the hydrogenation and dehydrogenation processes The present work aimed at the effect of temperature and cooling rate conditions on the niobium hydrogenation process using hydrogen gas The hydrogen contents of the materials were evaluated by weight change and chemical analysis X ray diffraction (XRD) was performed to identify and determine the lattice parameters of the formed hydride phases No hydrogenation took place under isothermal conditions only during cooling of the materials Significant hydrogenation occurred in the 500 C and 700 C experiments leading to the formation of a beta NbH(x) single phase material (C) 2010 Elsevier Ltd All rights reserved
Resumo:
The compositions of canola, soybean, corn, cottonseed and sunflower oils suggest that they exhibit substantially different propensity for oxidation following the order of Canola < corn < cottonseed < sunflower approximate to soybean. These data suggest that any of the vegetable oils evaluated could be blended with minimal impact on viscosity although compositional differences would surely affect oxidative stability. Cooling curve analysis showed that similar cooling profiles were obtained for different vegetable oils. Interestingly, no film boiling or transition nucleate boiling was observed with any of the vegetable oils and heat transfer occurs only by pure nucleate boiling and convection. High-temperature cooling properties of vegetable oils are considerable faster than those observed for petroleum oil-based quenchants. (C)2010 Journal of Mechanical Engineering. All rights reserved.
Resumo:
The effect of different microstructures on the polarization resistance (Rp) and the hydrogen-induced cracking (HIC) of a micro-alloyed steel austenitized and submitted to different cooling rates was studied. Samples 19.1 x 6 x 2 mm, containing the whole thickness of the plate were extracted from a 20 mm plate and heat treated on a quenching dilatometer, were submitted to Rp and HIC corrosion tests. Both Rp and HIC tests followed as close as possible ASTM G59 and NACE standard TM0284-2003, in this case, modified only with regard to the size of the samples. Steel samples transformed from austenite by a slow cooling (cooling rate of 0.5 degrees C.s(-1)) showed higher susceptibility to hydrogen-induced cracking, with large cracks in the middle of the sample propagating along segregation bands, corresponding to the centerline of the plate thickness. For cooling rates of 10 degrees C.s(-1), only small cracks were found in the matrix and micro cracks nucleated at non-metallic inclusions. For higher cooling rates (40 degrees C.s(-1)) very few small cracks were detected, linked to non-metallic inclusions. This result suggests that structures formed by polygonal structures and segregation bands (were cutectoid microconstituents predominate) have higher susceptibility to HIC. Structures predominantly formed by acicular ferrite make it difficult to propagate the cracks among non-oriented and interlaced acicular ferrite crystals. Smaller segregation bands containing eutectoid products also help inhibit cracking and crack propagation; segregation bands can function as pipelines for hydrogen diffusion and offer a path of stress concentration for the propagation of cracks, frequently associated to non-metallic inclusions. Polarization resistance essays performed on the steel in theas received condition, prior to any heat treatment, showed larger differences between the regions of the plate, with a considerably lower Rp in the centerline. The austenitization heat treatments followed by cooling rates of 0.5 e 10 degrees C.s(-1) made more uniform the corrosion resistance along the thickness of the plate. The effects of heat treatments on the corrosion resistance are probably related to the microconstituent formed, allied to the chemical homogenization of the impurities concentrated on the centerline of the plate.
Resumo:
Cooling towers are widely used in many industrial and utility plants as a cooling medium, whose thermal performance is of vital importance. Despite the wide interest in cooling tower design, rating and its importance in energy conservation, there are few investigations concerning the integrated analysis of cooling systems. This work presents an approach for the systemic performance analysis of a cooling water system. The approach combines experimental design with mathematical modeling. An experimental investigation was carried out to characterize the mass transfer in the packing of the cooling tower as a function of the liquid and gas flow rates, whose results were within the range of the measurement accuracy. Then, an integrated model was developed that relies on the mass and heat transfer of the cooling tower, as well as on the hydraulic and thermal interactions with a heat exchanger network. The integrated model for the cooling water system was simulated and the temperature results agree with the experimental data of the real operation of the pilot plant. A case study illustrates the interaction in the system and the need for a systemic analysis of cooling water system. The proposed mathematical and experimental analysis should be useful for performance analysis of real-world cooling water systems. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The thermal performance of a cooling tower and its cooling water system is critical for industrial plants, and small deviations from the design conditions may cause severe instability in the operation and economics of the process. External disturbances such as variation in the thermal demand of the process or oscillations in atmospheric conditions may be suppressed in multiple ways. Nevertheless, such alternatives are hardly ever implemented in the industrial operation due to the poor coordination between the utility and process sectors. The complexity of the operation increases because of the strong interaction among the process variables. In the present work, an integrated model for the minimization of the operating costs of a cooling water system is developed. The system is composed of a cooling tower as well as a network of heat exchangers. After the model is verified, several cases are studied with the objective of determining the optimal operation. It is observed that the most important operational resources to mitigate disturbances in the thermal demand of the process are, in this order: the increase in recycle water flow rate, the increase in air flow rate and finally the forced removal of a portion of the water flow rate that enters the cooling tower with the corresponding make-up flow rate. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The cooling intensity of topical emulsions added with encapsulated or free menthol was evaluated by a screened and trained panel recruited based on the American Society for Testing and Materials method. A sensory panel composed of 10 trained judges performed the evaluation of samples stored at 22 +/- 2C for 24 h and, after 28 days of storage, at 37.0 +/- 0.5C. The obtained data were analyzed by analysis of variance and Tukey`s test. The results showed an increase of cooling intensity as a function of encapsulated menthol concentration. The opposite was observed in samples added with free menthol, which may have caused sensory fatigue. Storage at 37 +/- 0.5C for 28 days had no impact on the cooling intensity of emulsions containing encapsulated menthol, demonstrating high stability and suggesting its application in cooling skin care products. In contrast, emulsions added with free menthol showed a drastic decrease of cooling intensity at 37 +/- 0.5C..
Resumo:
Traditional waste stabilisation pond (WSP) models encounter problems predicting pond performance because they cannot account for the influence of pond features, such as inlet structure or pond geometry, on fluid hydrodynamics. In this study, two dimensional (2-D) computational fluid dynamics (CFD) models were compared to experimental residence time distributions (RTD) from literature. In one of the-three geometries simulated, the 2-D CFD model successfully predicted the experimental RTD. However, flow patterns in the other two geometries were not well described due to the difficulty of representing the three dimensional (3-D) experimental inlet in the 2-D CFD model, and the sensitivity of the model results to the assumptions used to characterise the inlet. Neither a velocity similarity nor geometric similarity approach to inlet representation in 2-D gave results correlating with experimental data. However. it was shown that 2-D CFD models were not affected by changes in values of model parameters which are difficult to predict, particularly the turbulent inlet conditions. This work suggests that 2-D CFD models cannot be used a priori to give an adequate description of the hydrodynamic patterns in WSP. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The free running linewidth of an external cavity grating feedback diode laser is on the order of a few megahertz and is limited by the mechanical and acoustic vibrations of the external cavity. Such frequency fluctuations can be removed by electronic feedback. We present a hybrid stabilisation technique that uses both a Fabry-Perot confocal cavity and an atomic resonance to achieve excellent short and long term frequency stability. The system has been shown to reduce the laser linewidth of an external cavity diode laser by an order of magnitude to 140 kHz, while limiting frequency excursions to 60 kHz relative to an absolute reference over periods of several hours. The scheme also presents a simple way to frequency offset two lasers many gigahertz apart which should find a use in atom cooling experiments, where hyperfine ground-state frequency separations are often required.
Resumo:
The aim of this study was to establish the effect that pre-cooling the skin without a concomitant reduction in core temperature has on subsequent self-paced cycling performance under warm humid (31 degrees C and 60% relative humidity) conditions. Seven moderately trained males performed a 30 min self-paced cycling trial on two separate occasions. The conditions were counterbalanced as control or whole-body pre-cooling by water immersion so that resting skin temperature was reduced by approximate to 5-6 degrees C. After pre-cooling, mean skin temperature was lower throughout exercise and rectal temperature was lower (P < 0.05) between 15 and 25 min of exercise. Consequently, heat storage increased (P < 0.003) from 84.0 +/- 8.8 W . m(-2) to 153 +/- 13.1 W . m(-2) (mean +/- s((x) over bar)) after pre-cooling, while total body sweat fell from 1.7 +/- 0.1 1 . h(-1) to 1.2 +/- 0.1 1 . h(-1) (P < 0.05). The distance cycled increased from 14.9 +/- 0.8 to 15.8 +/- 0.7 km (P < 0.05) after pre-cooling. The results indicate that skin pre-cooling in the absence of a reduced rectal temperature is effective in reducing thermal strain and increasing the distance cycled in 30 min under warm humid conditions.