984 resultados para Converse Lyapunov theorem


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is proved that a Banach space X has the Lyapunov property if its subspace Y and the quotient space X/Y have it.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study some properties of finite-time stable stochastic nonlinear systems. We begin by showing several continuous dependence theorems of solutions on initial values under some conditions on the coefficients of stochastic systems. We then derive some regular properties of its stochastic settling time for a finite-time stable stochastic nonlinear system. We show continuity, positive definiteness and boundedness of the expected stochastic settling time under appropriate conditions. Finally, a Lyapunov function is constructed by making use of the expectation of the stochastic settling time, and the infinitesimal generator of the stochastic system defined on the Lyapunov function is also given, and hence resulting in a converse Lyapunov theorem of finite-time stochastic stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this comment, we will point out some errors existing in Chen and Jiao (2010) from definitions to the proof of the main result, where the authors discussed the finite-time stability of stochastic nonlinear systems and proved a Lyapunov theorem on the finitetime stability.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper focuses on the finite-time stability and stabilization designs of stochastic nonlinear systems. We first present and discuss a definition on the finite-time stability in probability of stochastic nonlinear systems, then we introduce a stochastic Lyapunov theorem on the finite-time stability, which has been established by Yin et al. We also employ this theorem to design a continuous state feedback controller that makes a class of stochastic nonlinear systems to be stable in finite time. An example and a simulation are given to illustrate the theoretical analysis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a new method for stabilizing disturbed power systems using wide area measurement and FACTS devices. The approach focuses on both first swing and damping stability of power systems following large disturbances. A two step control algorithm based on Lyapunov Theorem is proposed to be applied on the controllers to improve the power systems stability. The proposed approach is simulated on two test systems and the results show significant improvement in the first swing and damping stability of the test systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It is known that retarded functional differential equations can be regarded as Banach-space-valued generalized ordinary differential equations (GODEs). In this paper, some stability concepts for retarded functional differential equations are introduced and they are discussed using known stability results for GODEs. Then the equivalence of the different concepts of stabilities considered here are proved and converse Lyapunov theorems for a very wide class of retarded functional differential equations are obtained by means of the correspondence of this class of equations with GODEs.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper is concerned with the problem of finite-time stabilization for some nonlinear stochastic systems. Based on the stochastic Lyapunov theorem on finite-time stability that has been established by the authors in the paper, it is proven that Euler-type stochastic nonlinear systems can be finite-time stabilized via a family of continuous feedback controllers. Using the technique of adding a power integrator, a continuous, global state feedback controller is constructed to stabilize in finite time a large class of two-dimensional lower-triangular stochastic nonlinear systems. Also, for a class of three-dimensional lower-triangular stochastic nonlinear systems, a recursive design scheme of finite-time stabilization is given by developing the technique of adding a power integrator and constructing a continuous feedback controller. Finally, a simulation example is given to illustrate the theoretical results. © 2014 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The first section of this chapter starts with the Buffon problem, which is one of the oldest in stochastic geometry, and then continues with the definition of measures on the space of lines. The second section defines random closed sets and related measurability issues, explains how to characterize distributions of random closed sets by means of capacity functionals and introduces the concept of a selection. Based on this concept, the third section starts with the definition of the expectation and proves its convexifying effect that is related to the Lyapunov theorem for ranges of vector-valued measures. Finally, the strong law of large numbers for Minkowski sums of random sets is proved and the corresponding limit theorem is formulated. The chapter is concluded by a discussion of the union-scheme for random closed sets and a characterization of the corresponding stable laws.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The matrices studied here are positive stable (or briefly stable). These are matrices, real or complex, whose eigenvalues have positive real parts. A theorem of Lyapunov states that A is stable if and only if there exists H ˃ 0 such that AH + HA* = I. Let A be a stable matrix. Three aspects of the Lyapunov transformation LA :H → AH + HA* are discussed.

1. Let C1 (A) = {AH + HA* :H ≥ 0} and C2 (A) = {H: AH+HA* ≥ 0}. The problems of determining the cones C1(A) and C2(A) are still unsolved. Using solvability theory for linear equations over cones it is proved that C1(A) is the polar of C2(A*), and it is also shown that C1 (A) = C1(A-1). The inertia assumed by matrices in C1(A) is characterized.

2. The index of dissipation of A was defined to be the maximum number of equal eigenvalues of H, where H runs through all matrices in the interior of C2(A). Upper and lower bounds, as well as some properties of this index, are given.

3. We consider the minimal eigenvalue of the Lyapunov transform AH+HA*, where H varies over the set of all positive semi-definite matrices whose largest eigenvalue is less than or equal to one. Denote it by ψ(A). It is proved that if A is Hermitian and has eigenvalues μ1 ≥ μ2…≥ μn ˃ 0, then ψ(A) = -(μ1n)2/(4(μ1 + μn)). The value of ψ(A) is also determined in case A is a normal, stable matrix. Then ψ(A) can be expressed in terms of at most three of the eigenvalues of A. If A is an arbitrary stable matrix, then upper and lower bounds for ψ(A) are obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lyapunov's second theorem is an essential tool for stability analysis of differential equations. The paper provides an analog theorem for incremental stability analysis by lifting the Lyapunov function to the tangent bundle. The Lyapunov function endows the state-space with a Finsler structure. Incremental stability is inferred from infinitesimal contraction of the Finsler metrics through integration along solutions curves. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development and use of cocycles for analysis of non-autonomous behaviour is a technique that has been known for several years. Initially developed as an extension to semi-group theory for studying rion-autonornous behaviour, it was extensively used in analysing random dynamical systems [2, 9, 10, 12]. Many of the results regarding asymptotic behaviour developed for random dynamical systems, including the concept of cocycle attractors were successfully transferred and reinterpreted for deterministic non-autonomous systems primarily by P. Kloeden and B. Schmalfuss [20, 21, 28, 29]. The theory concerning cocycle attractors was later developed in various contexts specific to particular classes of dynamical systems [6, 7, 13], although a comprehensive understanding of cocycle attractors (redefined as pullback attractors within this thesis) and their role in the stability of non-autonomous dynamical systems was still at this stage incomplete. It was this purpose that motivated Chapters 1-3 to define and formalise the concept of stability within non-autonomous dynamical systems. The approach taken incorporates the elements of classical asymptotic theory, and refines the notion of pullback attraction with further development towards a study of pull-back stability arid pullback asymptotic stability. In a comprehensive manner, it clearly establishes both pullback and forward (classical) stability theory as fundamentally unique and essential components of non-autonomous stability. Many of the introductory theorems and examples highlight the key properties arid differences between pullback and forward stability. The theory also cohesively retains all the properties of classical asymptotic stability theory in an autonomous environment. These chapters are intended as a fundamental framework from which further research in the various fields of non-autonomous dynamical systems may be extended. A preliminary version of a Lyapunov-like theory that characterises pullback attraction is created as a tool for examining non-autonomous behaviour in Chapter 5. The nature of its usefulness however is at this stage restricted to the converse theorem of asymptotic stability. Chapter 7 introduces the theory of Loci Dynamics. A transformation is made to an alternative dynamical system where forward asymptotic (classical asymptotic) behaviour characterises pullback attraction to a particular point in the original dynamical system. This has the advantage in that certain conventional techniques for a forward analysis may be applied. The remainder of the thesis, Chapters 4, 6 and Section 7.3, investigates the effects of perturbations and discretisations on non-autonomous dynamical systems known to possess structures that exhibit some form of stability or attraction. Chapter 4 investigates autonomous systems with semi-group attractors, that have been non-autonomously perturbed, whilst Chapter 6 observes the effects of discretisation on non-autonomous dynamical systems that exhibit properties of forward asymptotic stability. Chapter 7 explores the same problem of discretisation, but for pullback asymptotically stable systems. The theory of Loci Dynamics is used to analyse the nature of the discretisation, but establishment of results directly analogous to those discovered in Chapter 6 is shown to be unachievable. Instead a case by case analysis is provided for specific classes of dynamical systems, for which the results generate a numerical approximation of the pullback attraction in the original continuous dynamical system. The nature of the results regarding discretisation provide a non-autonomous extension to the work initiated by A. Stuart and J. Humphries [34, 35] for the numerical approximation of semi-group attractors within autonomous systems. . Of particular importance is the effect on the system's asymptotic behaviour over non-finite intervals of discretisation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The converse statement of the Filippov-Wazewski relaxation theorem is proven, more precisely, two differential inclusions have the same closure of their solution sets if and only if the right-hand sides have the same convex hull. The idea of the proof is examining the contingent derivatives to the attainable sets.