986 resultados para Conventional technology
Resumo:
Technology involving genetic modification of crops has the potential to make a contribution to rural poverty reduction in many developing countries. Thus far, insecticide-producing 'Bt' varieties of cotton have been the main GM crops under cultivation in developing nations. Several studies have evaluated the farm-level performance of Bt varieties in comparison to conventional ones by estimating production technology, and have mostly found Bt technology to be very successful in raising output and/or reducing insecticide input. However, the production risk properties of this technology have not been studied, although they are likely to be important to risk-averse smallholders. This study investigates the output risk aspects of Bt technology using a three-year farm-level dataset on smallholder cotton production in Makhathini flats, Kwa-Zulu Natal, South Africa. Stochastic dominance and stochastic production function estimation methods are used to examine the risk properties of the two technologies. Results indicate that Bt technology increases output risk by being most effective when crop growth conditions are good, but being less effective when conditions are less favourable. However, in spite of its risk increasing effect, the mean output performance of Bt cotton is good enough to make it preferable to conventional technology even for risk-averse smallholders.
Resumo:
The variation in the adoption of a technology as a major source of competitive advantage has been attributed to the wide-ranging strategic foresight and the integrative capability of a firm. These possible areas of competitive advantage can exist in the periphery of the firm's strategic vision and can get easily blurred as a result of rigidness and can permeate in the decision-making process of the firm. This article explores how electric utility firms with a renewable energy portfolio can become strategically rigid in terms of adoption of newer technologies. The reluctance or delay in the adoption of new technology can be characterized as strategic rigidness, brought upon as a result of a firm's core competence or core capability in the other, more conventional technology arrangement. This paper explores the implications of such rigidness on the performance of a firm and consequently on the energy eco-system. The paper substantiates the results by emphasizing the case of Iberdrola S.A., an incumbent firm as a wind energy developer and its adoption decision behavior. We illustrate that the very routines that create competitive advantage for firms in the electric utility industry are vulnerable as they might also develop as sources of competitive disadvantage, when firms confront environmental change and uncertainty.
Resumo:
Dissertação de mestrado integrado em Engenharia Mecânica
Resumo:
Diplomityön tarkoituksena oli tutkia ETBE-prosessien simulointimallin kehittämistä. Simulointia varten valittiin eetteröinnin syöttövirroiksi etanoli ja tyypillinen FCC-kolonnin hiilivetysyöttö. Kirjallisuusosassa paneuduttiin tutkimaan syitä ETBE:n käytölle bensiinissä, valmistukseen tarvittavien raaka-aineiden lähteitä ja mahdollisia korvaavia raaka-aineita sekä mietittiin etanolissa olevien epäpuhtauksien vaikutusta prosessin tuotespesifikaatioihin. Kirjallisuusosassa tarkasteltiin lisäksi eri valmistajien markkinoimia eetteröintiteknologioita. Eetteröintiteknlogiat jaettiin perinteiseen tislaukseen pohjautuviin prosesseihin, reaktiiviseen tislaukseen pohjautuviin prosesseihin sekä Neste Engineering:in markkinoimaan NExETHERS-teknologiaan. Työn kokeellisessa osassa tutkittiin sekä etanolin epäpuhtauksien kulkeutumista prosessissa että kokeellisesti saadusta höyry-nestetasapainotiedosta määritettyjen Wilsonin yhtälön binääri-interaktioparametrien vaikutusta eetteröintiprosessin simulointituloksiin. Lopuksi simulointiin prosessia, jossa oli prosessin kannalta kriittiseksi havaitut etanolin epäpuhtaudet sekä hyviksi todetut binääri-interaktioparametrit etanolin ja FCC-syöttövirran C4-hiilivetyjen välillä. Uusilla binääriparametreilla saatuja simulointituloksia vertailtiin aikaisemmin samasta mallista vanhoilla binääriparametreilla saatuihin tuloksiin. Lopuksi tehtiin yhteenveto työn tuloksista ja annettiin ehdotukset jatkotutkimuksia varten.
Resumo:
Conventional technology used in the treatment of wastewater has been pointed as a major environmental problem for sustainable development, since minimization is not addressed accordingly. Advanced oxidation processes (AOP), based on the formation of hydroxyl radical (OH), a powerful oxidant agent, have been considered to be a potential technology for the destruction of many toxic compounds. Photocatalysis using solar light, an AOP, has been studied for nearly 20 years and recently attracted great interest as a clean-up technology. However, solar detoxification processes have not yet achieved commercial success. This article presents an overview of reaction mechanisms at the surface of semiconductors used as photocatalysts (specially TiO2), when heterogeneous photocatalysis is used to remove hazardous compounds from contaminated sites.
Resumo:
This work has been performed at Tapetes Sao Carlos-Brazil with the cooperation of the DaimlerChrysler Research Center Team in Ulm - Germany. The objective of the present paper is to report the results obtained with natural fiber reinforced unsaturated polyester (UP) composites, concerning surface quality measurements. The fibers that have been chosen for this work were sisal and curaua. The samples were produced by compression molding technique and afterwards submitted to three different tests, namely: a) thermal aging; b) water absorption and c) artificial weathering. The surface parameters measured before and after the tests were gloss, haze, short and long-waviness. The results have shown that after the tests there is a high loss of gloss, a high increase in haze, and a high increase in short and long-waviness as well. Curaua reinforced composites had a slightly better behavior when compared with sisal reinforced composites. The effect of the presence of filler and the addition of thermoplastic polyester (TP) on the material behavior has not been evidently detected. This result shows that the conventional technology/methods applied to UP-Fiberglass systems cannot be transferred to natural fibers without any modification. The fiber-matrix interaction and its response to the presence of additives must be fully understood before a successful processing route can be developed for painted natural fibers reinforced UP. Copyright © 2001 Society of Automotive Engineers, Inc.
Resumo:
The technique presented in this article presents a protocol for treatment that reduces the time required for the fabrication and placement of an implant supported prosthesis. It also offers improved patient comfort at a lower cost when compared to conventional technology.
Resumo:
Six-port network is an interesting radiofrequency architecture with multiple possibilities. Since it was firstly introduced in the seventies as an alternative network analyzer, the six-port network has been used for many applications, such as homodyne receivers, radar systems, direction of arrival estimation, UWB (Ultra-Wide-Band), or MIMO (Multiple Input Multiple Output) systems. Currently, it is considered as a one of the best candidates to implement a Software Defined Radio (SDR). This thesis comprises an exhaustive study of this promising architecture, where its fundamentals and the state-of-the-art are also included. In addition, the design and development of a SDR 0.3-6 GHz six-port receiver prototype is presented in this thesis, which is implemented in conventional technology. The system is experimentally characterized and validated for RF signal demodulation with good performance. The analysis of the six-port architecture is complemented by a theoretical and experimental comparison with other radiofrequency architectures suitable for SDR. Some novel contributions are introduced in the present thesis. Such novelties are in the direction of the highly topical issues on six-port technique: development and optimization of real-time I-Q regeneration techniques for multiport networks; and search of new techniques and technologies to contribute to the miniaturization of the six-port architecture. In particular, the novel contributions of this thesis can be summarized as: - Introduction of a new real-time auto-calibration method for multiport receivers, particularly suitable for broadband designs and high data rate applications. - Introduction of a new direct baseband I-Q regeneration technique for five-port receivers. - Contribution to the miniaturization of six-port receivers by the use of the multilayer LTCC (Low Temperature Cofired Ceramic) technology. Implementation of a compact (30x30x1.25 mm) broadband (0.3-6 GHz) six-port receiver in LTTC technology. The results and conclusions derived from this thesis have been satisfactory, and quite fruitful in terms of publications. A total of fourteen works have been published, considering international journals and conferences, and national conferences. Aditionally, a paper has been submitted to an internationally recognized journal, which is currently under review.
Resumo:
For purposes of interstate and international fruit trade, it is necessary to demonstrate that in areas in which fruit fly species have not previously established permanent populations, but which are subject to introductions of fruit flies from outside the area, the introduced population once detected, has not become established. In this paper, we apply methodology suggested mainly by Carey (1991, 1995) to introductions of Mediterranean fruit fly (Medfly), Ceratitis capitata Weid., and Queensland fruit fly (QFF) Bactrocera tryoni Froggatt (Diptera: Tephritidae) to South Australia, a state in which these species do not occur naturally and in which introductions, once detected, are actively treated. By analysing historical data associated with fruit fly outbreaks in South Australia, we demonstrate that: (i) fruit flies occur seasonally, as would occur in established populations, except there is no evidence of the critical spring generation of either species; (ii) there is no evidence of increasing frequency of outbreaks, trapped flies or larval occurrences over 29 years; (iii) there is no evidence of decreasing time between catches of adult flies as the years progress; (iv) there is no decrease in the mean number of years between outbreaks in the same locations; (v) there is no statistically significant recurrence of outbreaks in the same locations in successive years; (vi) there is no evidence of spread of outbreaks outwards from a central location; (vii) the likelihood of outbreaks in a city or town is related to the size of the human population; (viii) introduction pathways by road from Western Australia (for Medfly) and eastern Australia (for QFF) are shown to exist and to illegally or accidentally carry considerable amounts of fruit into South Australia; and (ix) there was no association between the numbers of either Queensland fruit fly or Medfly and the spatial pattern of either loquat or cumquat trees as sources of larval food in spring. This analysis supports the hypothesis that most fruit fly outbreaks in South Australia have been the result of separate introductions of infested fruit by vehicular traffic and that most of the resultant fly outbreaks were detected and died out within a few weeks of the application of eradication procedures. An alternative hypothesis, that populations of fruit flies are established in South Australia at below detectable levels, is impossible to disprove with conventional technology, but the likelihood of it being true is minimised by our analysis. Both hypotheses could be tested soon with newly developed genetic techniques.
Resumo:
To investigate the technical feasibility of a novel cooling system for commercial greenhouses, knowledge of the state of the art in greenhouse cooling is required. An extensive literature review was carried out that highlighted the physical processes of greenhouse cooling and showed the limitations of the conventional technology. The proposed cooling system utilises liquid desiccant technology; hence knowledge of liquid desiccant cooling is also a prerequisite before designing such a system. Extensive literature reviews on solar liquid desiccant regenerators and desiccators, which are essential parts of liquid desiccant cooling systems, were carried out to identify their advantages and disadvantages. In response to the findings, a regenerator and a desiccator were designed and constructed in lab. An important factor of liquid desiccant cooling is the choice of liquid desiccant itself. The hygroscopicity of the liquid desiccant affects the performance of the system. Bitterns, which are magnesium-rich brines derived from seawater, are proposed as an alternative liquid desiccant for cooling greenhouses. A thorough experimental and theoretical study was carried out in order to determine the properties of concentrated bitterns. It was concluded that their properties resemble pure magnesium chloride solutions. Therefore, magnesium chloride solution was used in laboratory experiments to assess the performance of the regenerator and the desiccator. To predict the whole system performance, the physical processes of heat and mass transfer were modelled using gPROMS® advanced process modelling software. The model was validated against the experimental results. Consequently it was used to model a commercials-scale greenhouse in several hot coastal areas in the tropics and sub-tropics. These case studies show that the system, when compared to evaporative cooling, achieves 3oC-5.6oC temperature drop inside the greenhouse in hot and humid places (RH>70%) and 2oC-4oC temperature drop in hot and dry places (50%
Resumo:
This thesis investigated the risk of accidental release of hydrocarbons during transportation and storage. Transportation of hydrocarbons from an offshore platform to processing units through subsea pipelines involves risk of release due to pipeline leakage resulting from corrosion, plastic deformation caused by seabed shakedown or damaged by contact with drifting iceberg. The environmental impacts of hydrocarbon dispersion can be severe. Overall safety and economic concerns of pipeline leakage at subsea environment are immense. A large leak can be detected by employing conventional technology such as, radar, intelligent pigging or chemical tracer but in a remote location like subsea or arctic, a small chronic leak may be undetected for a period of time. In case of storage, an accidental release of hydrocarbon from the storage tank could lead pool fire; further it could escalate to domino effects. This chain of accidents may lead to extremely severe consequences. Analyzing past accident scenarios it is observed that more than half of the industrial domino accidents involved fire as a primary event, and some other factors for instance, wind speed and direction, fuel type and engulfment of the compound. In this thesis, a computational fluid dynamics (CFD) approach is taken to model the subsea pipeline leak and the pool fire from a storage tank. A commercial software package ANSYS FLUENT Workbench 15 is used to model the subsea pipeline leakage. The CFD simulation results of four different types of fluids showed that the static pressure and pressure gradient along the axial length of the pipeline have a sharp signature variation near the leak orifice at steady state condition. Transient simulation is performed to obtain the acoustic signature of the pipe near leak orifice. The power spectral density (PSD) of acoustic signal is strong near the leak orifice and it dissipates as the distance and orientation from the leak orifice increase. The high-pressure fluid flow generates more noise than the low-pressure fluid flow. In order to model the pool fire from the storage tank, ANSYS CFX Workbench 14 is used. The CFD results show that the wind speed has significant contribution on the behavior of pool fire and its domino effects. The radiation contours are also obtained from CFD post processing, which can be applied for risk analysis. The outcome of this study will be helpful for better understanding of the domino effects of pool fire in complex geometrical settings of process industries. The attempt to reduce and prevent risks is discussed based on the results obtained from the numerical simulations of the numerical models.
Resumo:
An essential step in the development of products based on biotechnology is an assessment of their potential economic impacts and safety, including an evaluation of the potential impact of transgenic crops and practices related to their cultivation on the environment and human or animal health. The purpose of this paper is to provide an assessment method to evaluate the impact of biotechnologies that uses quantifiable parameters and allows a comparative analysis between conventional technology and technologies using GMOs. This paper introduces amethod to performan impact analysis associatedwith the commercial release and use of genetically modified plants, the Assessment SystemGMPMethod. The assessment is performed through indicators that are arranged according to their dimension criterion likewise: environmental, economic, social, capability and institutional approach. To perform an accurate evaluation of the GMP specific indicators related to genetic modification are grouped in common fields: genetic insert features, GMplant features, gene flow, food/feed field, introduction of the GMP, unexpected occurrences and specific indicators. The novelty is the possibility to include specific parameters to the biotechnology under assessment. In this case by case analysis the factors ofmoderation and the indexes are parameterized to perform an available assessment.
Resumo:
This paper discusses the results of a study to determine the differences between hearing aids and radiant beamforming technology.
Resumo:
Dual-junction solar cells formed by a GaAsP or GaInP top cell and a silicon (Si) bottom cell seem to be attractive candidates to materialize the long sought-for integration of III-V materials on Si for photovoltaic (PV) applications. Such integration would offer a cost breakthrough for PV technology, unifying the low cost of Si and the efficiency potential of III-V multijunction solar cells. The optimization of the Si solar cells properties in flat-plate PV technology is well-known; nevertheless, it has been proven that the behavior of Si substrates is different when processed in an MOVPE reactor In this study, we analyze several factors influencing the bottom subcell performance, namely, 1) the emitter formation as a result of phosphorus diffusion; 2) the passivation quality provided by the GaP nucleation layer; and 3) the process impact on the bottom subcell PV properties.
Resumo:
Mode of access: Internet.