949 resultados para Conventional packaging
Resumo:
The effect of modified atmosphere packaging (MAP) on the postharvest quality of fresh-cut watercress (Nasturtium officinale R. Br.) stored at 4 ºC for 7 d was studied. A portion of watercress was immediately analyzed (non-stored control) and the remaining fresh material was stored packaged under atmospheres enriched with N2, Ar, air, or vacuum. The analyzed parameters included colour, total soluble solids, pH, macronutrients, the individual profiles of sugars, organic acids, tocopherols and fatty acids, and total phenolics and flavonoids. Furthermore, four in vitro assays were performed to evaluate the antioxidant activity. After assessing the effect on individual quality parameters, it was possible to conclude that air was the less efficient atmosphere in preserving quality attributes of the non-stored control samples during cold storage. In turn, Ar-enriched MAP was the most suitable choice to preserve the overall postharvest quality. The present study also highlighted the nutritional and antioxidant properties of watercress, as well as the interest of its inclusion in human diets.
Resumo:
"Bioactive compounds" are extranutritional constituents that typically occur in small quantities in food. They are being intensively studied to evaluate their effects on health. Bioactive compounds include both water soluble compounds, such as phenolics, and lipidic substances such as n-3 fatty acids, tocopherols and sterols. Phenolic compounds, tocopherols and sterols are present in all plants and have been studied extensively in cereals, nuts and oil. n-3 fatty acids are present in fish and all around the vegetable kingdom. The aim of the present work was the determination of bioactive and potentially toxic compounds in cereal based foods and nuts. The first section of this study was focused on the determination of bioactive compounds in cereals. Because of that the different forms of phytosterols were investigated in hexaploid and tetraploid wheats. Hexaploid cultivars were the best source of esterified sterols (40.7% and 37.3% of total sterols for Triticum aestivum and Triticum spelta, respectively). Significant amounts of free sterols (65.5% and 60.7% of total sterols for Triticum durum and Triticum dicoccon, respectively) were found in the tetraploid cultivars. Then, free and bound phenolic compounds were identified in barley flours. HPLCESI/ MSD analysis in negative and positive ion mode established that barley free flavan-3- ols and proanthocyanidins were four dimers and four trimers having (epi)catechin and/or (epi)gallocatechin (C and/or GC) subunits. Hydroxycinnamic acids and their derivatives were the main bound phenols in barley flours. The results obtained demonstrated that barley flours were rich in phenolic compounds that showed high antioxidant activity. The study also examined the relationships between phenolic compounds and lipid oxidation of bakery. To this purpose, the investigated barley flours were used in the bakery production. The formulated oven products presented an interesting content of phenolic compounds, but they were not able to contain the lipid oxidation. Furthermore, the influence of conventional packaging on lipid oxidation of pasta was evaluated in n-3 enriched spaghetti and egg spaghetti. The results proved that conventional packaging was not appropriated to preserve pasta from lipid oxidation; in fact, pasta that was exposed to light showed a high content of potentially toxic compounds derived from lipid oxidation (such as peroxide, oxidized fatty acids and COPs). In the second section, the content of sterols, phenolic compounds, n-3 fatty acids and tocopherols in walnuts were reported. Rapid analytical techniques were used to analyze the lipid fraction and to characterize phenolic compounds in walnuts. Total lipid chromatogram was used for the simultaneous determination of the profile of sterols and tocopherols. Linoleic and linolenic acids were the most representative n-6 and n-3 essential dietary fatty acids present in these nuts. Walnuts contained substantial amounts of γ- and δ-tocopherol, which explained their antioxidant properties. Sitosterol, Δ5-avenasterol and campesterol were the major free sterols found. Capillary electrophoresis coupled to DAD and microTOF was utilized to determine phenolic content of walnut. A new compound in walnut ((2E,4E)- 8-hydroxy-2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester, [M−H]− 403.161m/z) with a structure similar to glansreginins was also identified. Phenolic compounds corresponded to 14–28% of total polar compounds quantified. Aglycone and glycosylated ellagic acid represented the principal components and account for 64–75% of total phenols in walnuts. However, the sum of glansreginins A, B and ((2E,4E)-8-hydroxy- 2,7-dimethyl-2,4-decadiene-1,10-dioic acid 6-O-β-D-glucopiranosyl ester was in the range of 72–86% of total quantified compounds.
Resumo:
Foods that provide medical and health benefits or have a role in disease risk prevention are termed functional foods. The functionality of functional foods is derived from bioactive compounds that are extranutritional constituents present in small quantities in food. Bioactive components include a range of chemical compounds with varying structures such as carotenoids, flavonoids, plant sterols, omega-3 fatty acids (n-3), allyl and diallyl sulfides, indoles (benzopyrroles), and phenolic acids. The increasing consumer interest in natural bioactive compounds has brought about a rise in demand for these kinds of compounds and, in parallel, an increasing number of scientific studies have this type of substance as main topic. The principal aim of this PhD research project was the study of different bioactive and toxic compounds in several natural matrices. To achieve this goal, chromatographic, spectroscopic and sensorial analysis were performed. This manuscript reports the main results obtained in the six activities briefly summarized as follows: • SECTION I: the influence of conventional packaging on lipid oxidation of pasta was evaluated in egg spaghetti. • SECTION II: the effect of the storage at different temperatures of virgin olive oil was monitored by peroxide value, fatty acid activity, OSI test and sensory analysis. • SECTION III: the glucosinolate and phenolic content of 37 rocket salad accessions were evaluated, comparing Eruca sativa and Diplotaxis tenuifolia species. Sensory analysis and the influence of the phenolic and glucosinolate composition on sensory attributes of rocket salads has been also studied. • SECTION IV: ten buckwheat honeys were characterised on the basis of their pollen, physicochemical, phenolic and volatile composition. • SECTION V: the polyphenolic fraction, anthocyanins and other polar compounds, the antioxidant capacity and the anty-hyperlipemic action of the aqueous extract of Hibiscus sabdariffa were achieved. • SECTION VI: the optimization of a normal phase high pressure liquid chromatography–fluorescence detection method for the quantitation of flavanols and procyanidins in cocoa powder and chocolate samples was performed.
Resumo:
Diplomityön tavoite oli tutkia, mitä toimintoja ja tekniikoita uusi, joustava kartonkipakkauslinja sisältää ja mitkä suuntaukset pakkausteollisuudessa tulevat olemaan tärkeitä tulevaisuudessa. Pakkauslinjan päätoimintoja tarkasteltiin nykyisten jatulevaisuuden tekniikoiden pohjalta. Erityisesti tarkasteltiin laser-sovellusten käytön mahdollisuutta pakkauslinjan eri osatoiminnoissa. Katsaus pakkausteollisuuden tulevaisuuden näkymiin luotiin kirjallisuuden ja aikaisempien tutkimusten pohjalta, minkä perusteella työssä oletetaan, että yksilölliset ja monitoimipakkaukset tulevat lisääntymään tulevaisuudessa. Eri tuotantoerien välillä olevat asetusajat tulee saada minimoitua, mutta millä keinoin joustavuus on saavutettavissa? Yksi ratkaisu pakkausten valmistamisessa on käyttää robottisolua, mikä on mahdollista luultavasti ainakin kuppimuotoisten pakkausten kohdalla. Muutenkin robotiikka on lisääntymässä pakkausteollisuudessa. Digitaalisten painotekniikoiden kehitys on mahdollistanut yksilölliset painatukset. Tulevaisuudessa painatus on mahdollista tehdä pakkauslinjan loppupäässä, jopa vasta täytön ja suljennan jälkeen. Laserleikkaus on jo nyt käytössä, mutta tulevaisuudessa myös saumaus ja perinteinen nuuttaus on mahdollista tehdä lasersovelluksia käyttäen. Kehittynyt, väyläpohjainen ohjausjärjestelmä on tulevaisuudessa välttämätön joustavassa pakkauslinjassa. Internetin välityksellä toimiva etäohjattu virheenkorjausdiagnostiikka tulee myös olemaan itsestäänselvyys tulevaisuudessa. Kustannussäästöjä voidaan saavuttaa käyttämälläpakkauslinjassa modulaarista rakennetta. Standardiosien ja standardiosajärjestelmien käyttäminen pienentää myös käyttö- ja huoltokustannuksia. Tärkeää on kuitenkin muistaa, ettei joustavuutta voida saavuttaa pelkästään yhtä ominaisuutta tai tekniikkaa hyödyntäen vaan monia menetelmiä yhdistäen. Suunniteltavan pakkauslinjan toiminta on myös hyvä varmistaa käyttäen apuna mallinnusta ja simulointia.
Resumo:
With the continued miniaturization and increasing performance of electronic devices, new technical challenges have arisen. One such issue is delamination occurring at critical interfaces inside the device. This major reliability issue can occur during the manufacturing process or during normal use of the device. Proper evaluation of the adhesion strength of critical interfaces early in the product development cycle can help reduce reliability issues and time-to-market of the product. However, conventional adhesion strength testing is inherently limited in the face of package miniaturization, which brings about further technical challenges to quantify design integrity and reliability. Although there are many different interfaces in today's advanced electronic packages, they can be generalized into two main categories: 1) rigid to rigid connections with a thin flexible polymeric layer in between, or 2) a thin film membrane on a rigid structure. Knowing that every technique has its own advantages and disadvantages, multiple testing methods must be enhanced and developed to be able to accommodate all the interfaces encountered for emerging electronic packaging technologies. For evaluating the adhesion strength of high adhesion strength interfaces in thin multilayer structures a novel adhesion test configuration called “single cantilever adhesion test (SCAT)” is proposed and implemented for an epoxy molding compound (EMC) and photo solder resist (PSR) interface. The test method is then shown to be capable of comparing and selecting the stronger of two potential EMC/PSR material sets. Additionally, a theoretical approach for establishing the applicable testing domain for a four-point bending test method was presented. For evaluating polymeric films on rigid substrates, major testing challenges are encountered for reducing testing scatter and for factoring in the potentially degrading effect of environmental conditioning on the material properties of the film. An advanced blister test with predefined area test method was developed that considers an elasto-plastic analytical solution and implemented for a conformal coating used to prevent tin whisker growth. The advanced blister testing with predefined area test method was then extended by employing a numerical method for evaluating the adhesion strength when the polymer’s film properties are unknown.
Resumo:
Watercress (Nasturtium officinale R. Br.) is a semi-aquatic plant of the Brassicaceae family highly appreciated in the Mediterranean cuisine. It features sharp, peppery and slightly tangy taste and contains health-promoting phytochemicals. Its consumption as a fresh-cut product has increased in recent years, as well as the global market of minimally processed vegetables. This demand is driven by the growing interest in the role of food in promoting the human health and wellbeing and to meet consumer needs for fresh-like and more convenient foods. Due to the reduced shelf-life of this plant, the suitability of inert gas-enriched atmospheres and ionizing irradiation for preserving visual, nutritional and functional quality attributes during cold storage was studied. Watercress samples were gathered in the Northeast region of Portugal, rinsed in tap water and a portion was immediately analyzed (non-stored control). The remaining fresh material was packaged in polyethylene bags under N2- and Ar-enriched atmospheres, conventional atmosphere (air) and vacuum (no atmosphere). Samples under conventional atmosphere were irradiated at 1, 2 and 5 kGy of gamma-rays (predicted doses) in a 60Co experimental chamber. A non-irradiated control followed all the experiment. Then, all packaged samples were stored at 4 ºC for 7 days. The studied quality parameters included the colour that was measured with a Konica Minolta colorimeter, and total soluble solids and pH determined in squeezed juice. The proximate composition (moisture, proteins, fat, ash, carbohydrates and energy) was evaluated using the AOA C procedures. Organic acids, free sugars, fatty acids and tocopherols were analyzed by chromatographic techniques. Samples were also evaluated for its DPPH• scavenging activity, reducing power, and lipid peroxidation inhibition capacity trough the inhibition of the β-carotene bleaching and thiobarbituric acid reactive substances (TBAR S) formation. Differences among treatments were analyzed using the one-way analysis of variance (ANO VA) and a linear discriminant analysis (LDA ) was used to evaluate the effects on the overall postharvest quality. After evaluating the effect on the individual quality parameters, the LDA revealed that the Ar-enriched atmosphere and the irradiation at 2 kGy were suitable processing choices for preserving the integrity of the non-stored control samples during cold storage. Thus, these non-thermal treatments were highlighted for shelf-life extension of fresh-cut watercress.
Resumo:
Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample representativeness, and minimizing the effect of the presence of contaminants.
Resumo:
In this work, all publicly-accessible published findings on Alicyclobacillus acidoterrestris heat resistance in fruit beverages as affected by temperature and pH were compiled. Then, study characteristics (protocols, fruit and variety, °Brix, pH, temperature, heating medium, culture medium, inactivation method, strains, etc.) were extracted from the primary studies, and some of them incorporated to a meta-analysis mixed-effects linear model based on the basic Bigelow equation describing the heat resistance parameters of this bacterium. The model estimated mean D* values (time needed for one log reduction at a temperature of 95 °C and a pH of 3.5) of Alicyclobacillus in beverages of different fruits, two different concentration types, with and without bacteriocins, and with and without clarification. The zT (temperature change needed to cause one log reduction in D-values) estimated by the meta-analysis model were compared to those ('observed' zT values) reported in the primary studies, and in all cases they were within the confidence intervals of the model. The model was capable of predicting the heat resistance parameters of Alicyclobacillus in fruit beverages beyond the types available in the meta-analytical data. It is expected that the compilation of the thermal resistance of Alicyclobacillus in fruit beverages, carried out in this study, will be of utility to food quality managers in the determination or validation of the lethality of their current heat treatment processes.
Resumo:
For centuries, specific instruments or regular toothbrushes have routinely been used to remove tongue biofilm and improve breath odor. Toothbrushes with a tongue scraper on the back of their head have recently been introduced to the market. The present study compared the effectiveness of a manual toothbrush with this new design, i.e., possessing a tongue scraper, and a commercial tongue scraper in improving breath odor and reducing the aerobic and anaerobic microbiota of tongue surface. The evaluations occurred at 4 moments, when the participants (n=30) had their halitosis quantified with a halimeter and scored according to a 4-point scoring system corresponding to different levels of intensity. Saliva was collected for counts of aerobic and anaerobic microorganisms. Data were analyzed statistically by Friedman's test (p<0.05). When differences were detected, the Wilcoxon test adjusted for Bonferroni correction was used for multiple comparisons (group to group). The results confirmed the importance of mechanical cleaning of the tongue, since this procedure provided an improvement in halitosis and reduction of aerobe and anaerobe counts. Regarding the evaluated methods, the toothbrush's tongue scraper and conventional tongue scraper had a similar performance in terms of breath improvement and reduction of tongue microbiota, and may be indicated as effective methods for tongue cleaning.
Resumo:
This in vivo study evaluated the dissociation quality of maxillary premolar roots combining variations of vertical and horizontal angulations by using X-ray holders (Rinn -XCP), and made a comparison between two types of intraoral radiography systems - conventional film (Kodak Insight, Rochester, USA) and digital radiography (Kodak RVG 6100, Kodak, Rochester, USA). The study sample was comprised of 20 patients with a total of 20 maxillary premolars that were radiographed, using the paralleling angle technique (GP), with a 20º variation of the horizontal angle (GM) and 25º variation of the horizontal angle combined with 15º vertical angle (GMV). Each image was independently analyzed by two experienced examiners. These examiners assigned a score to the diagnostic capability of root dissociation and the measurement of the distance between the apexes. Statistical data was derived using the Wilcoxon Signed Rank test, Friedman and T test. The means of the measured distances between buccal and lingual root apexes were greater for the GMV, which ranged from 2.3 mm to 3.3 mm. A statistically significant difference was found between GM and GMV when compared to GP with p < 0.01. An established best diagnostic dissociation roots image was found in the GMV. These results support the use of the anterior X-ray holders which offer a better combined deviation (GMV) to dissociate maxillary premolar roots in both radiography systems.
Resumo:
The aim of this study was to evaluate the following acrylic resins: Clássico®, QC-20® and Lucitone®, recommended specifically for thermal polymerization, and Acron MC® and VIPI-WAVE®, made for polymerization by microwave energy. The resins were evaluated regarding their surface nanohardness and modulus of elasticity, while varying the polymerization time recommended by the manufacturer. They were also compared as to the presence of water absorbed by the samples. The technique used was nanoindentation, using the Nano Indenter XP®, MTS. According to an intra-group analysis, when using the polymerization time recommended by the manufacturer, a variation of 0.14 to 0.23 GPa for nanohardness and 2.61 to 3.73 GPa for modulus of elasticity was observed for the thermally polymerized resins. The variation for the resins made for polymerization by microwave energy was 0.15 to 0.22 GPa for nanohardness and 2.94 to 3.73 GPa for modulus of elasticity. The conclusion was that the Classico® resin presented higher nanohardness and higher modulus of elasticity values when compared to those of the same group, while Acron MC® presented the highest values for the same characteristics when compared to those of the same group. The water absorption evaluation showed that all the thermal polymerization resins, except for Lucitone®, presented significant nanohardness differences when submitted to dehydration or rehydration, while only Acron MC® presented no significant differences when submitted to a double polymerization time. Regarding the modulus of elasticity, it was observed that all the tested materials and products, except for Lucitone®, showed a significant increase in modulus of elasticity when submitted to a lack of hydration.
Resumo:
A practical method for the structural assignment of 3,4-O-benzylidene-D-ribono-1,5-lactones and analogues using conventional NMR techniques and NOESY measurements in solution is described. 2-O-Acyl-3,4-O-benzylidene-D-ribono-1,5-lactones were prepared in good yields by acylation of Zinner’s lactone with acyl chlorides under mildly basic conditions. Structural determination of 2-O-(4-nitrobenzoyl)-3,4-O-benzylidene-D-ribono-1,5-lactone was achieved by single crystal x-ray diffraction, which supports the results based on spectroscopic data.
Resumo:
A total of 316 samples of nasopharyngeal aspirate from infants up to two years of age with acute respiratory-tract illnesses were processed for detection of respiratory syncytial virus (RSV) using three different techniques: viral isolation, direct immunofluorescence, and PCR. Of the samples, 36 (11.4%) were positive for RSV, considering the three techniques. PCR was the most sensitive technique, providing positive findings in 35/316 (11.1%) of the samples, followed by direct immunofluorescence (25/316, 7.9%) and viral isolation (20/315, 6.3%) (p < 0.001). A sample was positive by immunofluorescence and negative by PCR, and 11 (31.4%) were positive only by RT-PCR. We conclude that RT-PCR is more sensitive than IF and viral isolation to detect RSV in nasopharyngeal aspirate specimens in newborn and infants.
Resumo:
In this paper we discuss the use of photonic crystal fibers (PCFs) as discrete devices for simultaneous wideband dispersion compensation and Raman amplification. The performance of the PCFs in terms of gain, ripple, optical signal-to-noise ratio (OSNR) and required fiber length for complete dispersion compensation is compared with conventional dispersion compensating fibers (DCFs). The main goal is to determine the minimum PCF loss beyond which its performance surpasses a state-of-the-art DCF and justifies practical use in telecommunication systems. (C) 2009 Optical Society of America
Resumo:
With the increased incidence of cancer and a similarly increased number of surgeries for insertion of silicone breast implants, it is necessary to assess the effect of such material within the breast tissue, particularly in mammography, because of the reduction in the power of breast cancer diagnosis. In this work, we introduce a breast phantom with silicone implants in order to evaluate the influence of the implant on the visibility of the main mammographic findings: fibers, microcalcifications and tumor masses. In this proposed phantom, the breast tissue was simulated using gel paraffin. In the optical density of phantom mammograms with implants, a reduction in breast tissue visibility was seen corresponding to 23% when compared to a phantom without silicone implants. This poor visibility was due to the X-ray beam scattering on silicone material; this effect produced a loss of visibility in the areas adjacent to the implant. It is expected that the proposed phantom model may be used as a device for the establishment of a technical standard for these types of procedures.