905 resultados para Conventional adhesive system
Resumo:
This experimental light microscopy study investigated the formation of a hybrid layer and resin tags on sound dentin, after utilization of conventional and self-etching adhesive systems. After restorative procedures, the specimens were decalcified in a formic acid and sodium citrate solution, embedded in paraffin, sectioned at 6-microm thickness and stained by the Brown & Brenn method for analysis and measurement by light microscopy (AXIOPHOT) (400x). The results were statistically analyzed by analysis of variance, at a significance level of 5%. Based on the results, it could be concluded that the conventional adhesive allowed the formation of a thicker hybrid layer than the self-etching adhesive, with similar penetration into the dentinal tubules (resin tags).
Resumo:
Purpose: The aim of this study was to investigate the influence of Nd:YAG laser on the shear bond strength to enamel and dentin of total and self-etch adhesives when the laser was applied over the adhesives, before they were photopolymerized, in an attempt to create a new bonding layer by dentin-adhesive melting.Material and Methods: One-hundred twenty bovine incisors were ground to obtain flat surfaces. Specimens were divided into two substrate groups (n=60): substrate E (enamel) and substrate D (dentin). Each substrate group was subdivided into four groups (n=15), according to the surface treatment accomplished: X (Xeno III self-etching adhesive, control), XL (Xeno III + laser Nd:YAG irradiation at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental), S (acid etching + Single Bond conventional adhesive, Control), and SL (acid etching + Single Bond + laser Nd:YAG at 140 mJ/10 Hz for 60 seconds + photopolymerization, experimental). The bonding area was delimited with 3-mm-diameter adhesive tape for the bonding procedures. Cylinders of composite were fabricated on the bonding area using a Teflon matrix. The teeth were stored in water at 37 degrees C/48 h and submitted to shear testing at a crosshead speed of 0.5 mm/min in a universal testing machine. Results were analyzed with three-way analysis of variance (ANOVA; substrate, adhesive, and treatment) and Tukey tests (alpha=0.05). ANOVA revealed significant differences for the substrate, adhesive system, and type of treatment: lased or unlased (p<0.05). The mean shear bond strength values (MPa) for the enamel groups were X=20.2 +/- 5.61, XL=23.6 +/- 4.92, S=20.8 +/- 4.55, SL=22.1 +/- 5.14 and for the dentin groups were X=14.1 +/- 7.51, XL=22.2 +/- 6.45, S=11.2 +/- 5.77, SL=15.9 +/- 3.61. For dentin, Xeno III self-etch adhesive showed significantly higher shear bond strength compared with Single Bond total-etch adhesive; Nd:YAG laser irradiation showed significantly higher shear bond strength compared with control (unlased).Conclusion: Nd:YAG laser application prior to photopolymerization of adhesive systems significantly increased the bond strength to dentin.
Resumo:
Objective: The aim of this research is to use finite element analysis (FEA) to quantify the effect of the sample shape and the imperfections induced during the manufacturing process of samples on the bond strength and modes of failure of dental adhesive systems through microtensile test. Using the FEA prediction for individual parameters effect, estimation of expected variation and spread of the microtensile bond strength results for different sample geometries is made. Methods: The estimated stress distributions for three different sample shapes, hourglass, stick and dumbbell predicted by FEA are used to predict the strength for different fracture modes. Parameters such as the adhesive thickness, uneven interface of the adhesive and composite and dentin, misalignment of axis of loading, the existence of flaws such as induced cracks during shaping the samples or bubbles created during application of the adhesive are considered. Microtensile experiments are performed simultaneously to measure bond strength and modes of failure. These are compared with the FEA results. Results: The relative bonding strength and its standard deviation for the specimens with different geometries measured through the microtensile tests confirm the findings of the FEA. The hourglass shape samples show lower tensile bond strength and standard deviation compared to the stick and dumbbell shape samples. ANOVA analysis confirms no significant difference between dumbbell and stick geometry results, and major differences of these two geometries compared to hourglass shape measured values. Induced flaws in the adhesive and misalignment of the angle of application of load have significant effect on the microtensile bond strength. Using adhesive with higher modulus the differences between the bond strength of the three sample geometries increase. Significance: The result of the research clarifies the importance of the sample geometry chosen in measuring the bond strength. It quantifies the effect of the imperfections on the bond strength for each of the sample geometries through a systematic and all embracing study. The results explain the reasons of the large spread of the microtensile test results reported by various researchers working in different labs and the need for standardization of the test method and sample shape used in evaluation of the dentin-adhesive bonding system. © 2007 Academy of Dental Materials.
Resumo:
Objective. This study evaluated histopathologically the response of pulp and periradicular tissues after pulp capping with an all-in-one self-etching adhesive system in dogs` teeth. Study design. Forty teeth of 4 dogs were assigned to 3 groups according to the pulp capping material: G1 (n = 20): self-etching adhesive system; G2 (n = 10): Ca(OH)(2); G3 (n = 10): zinc oxide-eugenol. The animals were killed 7 and 70 days after pulp capping. The pieces containing the pulp-capped teeth were removed and processed for histologic analysis. Results. At 7 days, no dentin bridge formation was observed; G1 and G3 exhibited inflammatory pulpal alterations, whereas G2 presented only mild inflammatory infiltrate in the pulp tissue adjacent to the capping material, the remainder being intact. At 70 days, no specimen in G1 or G3 presented dentin bridge formation. The remaining pulp tissue exhibited severe inflammatory alterations and areas of necrosis. In G2, all specimens showed dentin bridge formation and absence of inflammation and mineralized tissue resorption. No bacteria were identified using Brown and Brenn staining techniques in all 3 groups at any observation period. Conclusion. According to the conditions of this study, direct pulp capping with the self-etching adhesive system did not allow pulp tissue repair and failed histopathologically in 100% of the cases. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108: e34-e40)
Resumo:
Objectives: To evaluate the pulpo-dentin complex response to a dentin adhesive application in deep cavities performed in human teeth.Methods: Deep class V cavities were prepared on the buccal surface of 46 premolars. The remaining dentin of the axial wall received 10% phosphoric acid and dentin adhesive (group DA), or was protected before the acid and dentin adhesive application with calcium hydroxide cement (group CH). Half of the teeth, which received the acid application directly over the axial wall, were contaminated prior to the procedures with dental plaque collected from the patient's own teeth (group DAC). The plaque was placed on the dentin for 5 min and then the cavity was washed. All teeth were restored with a light-cured composite resin. The teeth were extracted after 7, 30 or 60 days and prepared according to normal histologic techniques. Serial sections were stained with WE, Masson's trichrome and Brown & Brenn technique for demonstration of bacteria.Results: the histopathologic evaluation showed that in groups DA and DAC, the inflammatory response was more evident than in group CH. Also, the intensity of the pulp reaction increased as the remaining dentin thickness decreased. There was no statistical difference in the inflammatory response between the groups DA and DAC.Conclusion: Based on the experimental conditions, we concluded that the All Bond 2 adhesive system, when applied on dentin in deep cavities, showed an acceptable biocompatibility. However, the intensity of the pulpo-dentin complex response depends on the remaining dentin thickness. (C) 1999 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The aim of the study was to evaluate the biocompatibility of an adhesive system and a resin component when implanted into connective tissue of rats. Forty sponges embedded in both materials: Scotchbond MP (SBMP/3M - Group A) and 2 - hydroxyethyl-methacrylate (HEMA - Group B), were implanted into dorsal connective tissue of 20 animals. After 7, 15, 30, or 60 days of the implantation, the animals were sacrificed; implant sites were excised and immersed for 24 hours in Kamovisky's fixative. The samples were processed under routine histologic technique, being stained with H & E. Histological evaluation showed that both materials promoted at 7 days intense inflammatory response with predominance of neutrophils and macrophages. The intense connective reaction was replaced for fibroblastic proliferation associated with macrophages and foreign body giant cells over time. The persistent moderate inflammatory reaction adjacent to scattered fragments of materials was greater to HEMA than to the SBMP. Both experimental materials did not show acceptable biocompatibility with connective tissue of rats in spite of allowing an evident connective tissue healing.
Resumo:
Purpose: To evaluate clinically and microscopically the human pulp response when directly capped with an adhesive system or calcium hydroxide over short (9-12 days) and long (53-204 days) experimental periods. Materials and Methods: Fifty-one sound human premolars scheduled for orthodontic extraction, had their pulp horns gently exposed with a diamond point. Debris in the pulp wound was washed out with a sterile saline solution. The pulps were then capped with either an adhesive system (Scotchbond Multi-Purpose Plus) or calcium hydroxide. All teeth were subsequently restored with resin-based composite (Z-100) according to the manufacturer's instructions. After the experimental periods, the teeth were extracted and processed for light microscopic examination. Results: Short-term: the pulp tissue capped with SBMP-P exhibited dilated and congested blood vessels associated with a mo;derate inflammatory response and blanching of pulp cell nuclei. Long-term: no evidence of healing and bridge formation was observed. A persistent mild inflammatory pulp response was present. Micro-abscesses were detected in three cases associated with bacterial infiltration. Calcium hydroxide stimulated early pulp repair and dentin bridging which extended into the longest period.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The purpose of this in vitro study was to verify through micro tensile bond test the bond strength of an adhesive system irradiated with Nd:YAG laser in dentine previously treated with Er:YAG laser. Twenty caries free extracted human third molars were used. The teeth were divided in four experimental groups (n = 5): (G1) control group; (G2) irradiation of the adhesive system with the Nd:YAG laser; (G3) dentin treatment with Er:YAG laser; (G4) dentin treatment with Er:YAG laser followed by the irradiation of the adhesive system with Nd:YAG laser. The Er:YAG laser fluency parameter for the dentin treatment was of 60 J/cm(2). ne adhesive system was irradiated with the Nd:YAG laser with fluency of 100 J/cm(2). Dental restorations were performed with Adper Single Bond 2/Z250. One tooth from each group was prepared for the evaluation of the adhesive interface under SEM and bond failure tests were also performed and evaluated. The statistical analysis showed statistical significant difference between the groups G1 and G3, G1 and G4, G2 and G3, and G2 and G4; and similarity between the groups G1 and G2, and G3 and G4. The adhesive failures were predominant in all the experimental groups. The SEM analysis showed an adhesive interface with features confirming the results of the mechanical tests. The Nd:YAG laser on the adhesive system did not influence the bond strength in dentin treated or not with the Er:YAG laser.
Resumo:
Purpose: This study evaluated the bond strength of two etch-and-rinse adhesive systems (two- and three-step) and a self-etching system to Coronal and root canal dentin.Materials and Methods: The root canals of 30 human incisors and canines were instrumented and prepared with burs. The posts used for luting were duplicated with dual resin cement (Duo-link) inside Aestheti Plus #2 molds. Thus, three groups were formed (n = 10) according to the adhesive system employed: All-Bond 2 (TE3) + resin cement post (rcp) + Duo-link (DI); One-Step Plus (TE2) + rcp + DI; Tyrian/One-Step Plus (SE) + rcp + DI. Afterwards, 8 transverse sections (1.5 mm) were cut from 4 mm above the CEJ up to 4 mm short of the root canal apex, comprising coronal and root canal dentin. The sections were submitted to push-out testing in a universal testing machine EMIC (1 mm/min). Bond strength data were analyzed with two-way repeated measures ANOVA and Tukey's test (p < 0.05).Results: The relationship between the adhesives was not the same in the different regions (p < 0.05). Comparison of the means achieved with the adhesives in each region (Tukey; p < 0.05) revealed that TE3 (mean standard deviation: 5.22 +/- 1.70) was higher than TE2 (2.60 +/- 1.74) and SE (1.68 +/- 1.85).Conclusion: Under the experimental conditions, better bonding to dentin was achieved using the three-step etch-and-rinse system, especially in the coronal region. Therefore, the traditional etch-and-rinse three-step adhesive system seems to be the best choice for teeth needing adhesive endodontic restorations.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
This study evaluated histomorphologically the influence of chronological age of the dog on the dental pulp-healing process after capping with the All Bond 2 system or with calcium hydroxide paste. The animals were divided according to age into young and adult groups. Class 5-type cavities were prepared, and the pulp was submitted to an exposure of a diameter of 0.5 mm. The pulp of the teeth was then protected with the adhesive system or with a calcium hydroxide paste. Sixty days after treatment, the results obtained with the adhesive system in the young group were significantly better than those in the adult group. With calcium hydroxide, the results were similar for both groups. The pulp treated with calcium hydroxide exhibited a complete hard tissue bridge and a pulp without inflammatory reaction, a fact not observed when the adhesive system was used. In conclusion, the chronological age of the pulp influenced the comparative results only for the adhesive system (P = 0.1), and the total results were better with calcium hydroxide than with the All Bond 2 system (P = 0.01).