9 resultados para Conularia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Conularia beds of the Ponta Grossa Formation (Devonian) of the Paraná Basin, southern Brazil, yield well-preserved specimens of Conularia quichua Ulrich and Paraconularia africana Sharpe. Many of these are preserved in life orientation. Also, one of the C. quichua specimens has five faces instead of four, providing additional evidence of a cnidarian affinity for conulariids. Conulariids occur in the Jaguariaíva Member (or Sequence B, transgressive system tract) containing several obrution deposits beneath marine flooding surfaces. Taphonomic data obtained from these beds show conclusively that both C. quichua and P. africana were epibenthic, sessile invertebrates originally oriented with their long axis perpendicular to the bottom and with their aperture opening upward. Of the 136 C. quichua specimens examined here, 125 occur isolated. Eleven of the C. quichua specimens collectively occur in five discrete clusters consisting of two or three specimens. All of the clustered specimens are fully inflated (exhibiting a rectangular transverse cross section) or slightly compressed longitudinally. In all of these specimens the apex is missing, and thus the problem of whether the clusters were clonal colonies or formed through preferential larval settlement cannot be resolved conclusively. However, in the single cluster consisting of three specimens, the specimens are oriented perpendicular to bedding, and thus they do not converge adapically. The three specimens are in contact with each other along the upper portion of their median region. These and the lack of any evidence of a sheet of budding stolons, suggest that this cluster was formed by preferential larval settlement. © Asociación Paleontológica Argentina.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exceptionally abundant specimens of Conularia aff. desiderata Hall occur in multiple marine obrution deposits, in a single sixth-order parasequence composed of argillaceous and silty very fine sandstone, in the Otsego Member of the Mount Marion Formation (Middle Devonian, Givetian) in eastern New York State, USA. Associated fossils consist mostly of rhynchonelliform brachiopods but also include bivalve molluscs, orthoconic nautiloids, linguliform brachiopods and gastropods. Many of the brachiopods, bivalve molluscs and conulariids have been buried in situ. Conulariids buried in situ are oriented with their aperture facing obliquely upward and with their long axis inclined at up to 87degree to bedding. Most specimens are solitary, but some occur in V-like pairs or in radial clusters consisting of three specimens, with the component specimens being about equally long or (less frequently) substantially different in length. The compacted apical end of Conularia buried in situ generally rests upon argillaceous sandstone. With one possible exception, none of the examined specimens terminates in a schott (apical wall), and internal schotts appear to be absent. The apical ends of specimens in V-like pairs and radial clusters show no direct evidence of interconnection of their periderms. The apical, middle or apertural region of some inclined specimens abuts or is in close lateral proximity to a recumbent conulariid or to one or more spiriferid brachiopods, some of which have been buried in their original life orientation. The azimuthal bearings of Conularia and nautiloid long axes and the directions in which conulariids open are nonrandom, with conulariids being preferentially aligned between 350 and 50degree and with their apertural end facing north-east, and nautiloids being preferentially aligned between 30 and 70degree. Otsego Member Conularia were erect or semi-erect, epifaunal or partially infaunal animals, the apical end of which rested upon very fine bottom sediment. The origin of V-like pairs and radial clusters remains enigmatic, but it is probable that production of schotts was not a regular feature of this animal's life history. Finally, conulariids and associated fauna were occasionally smothered by distal storm deposits, under the influence of relatively weak bottom currents. © The Palaeontological Association.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

v.6:no.10(1935)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a cladistic analysis of the suborder Conulariina Miller and Gurley, 1896, a major extinct (Vendian-Triassic) group of scyphozoan cnidarians, are presented. The analysis sought to test whether the three conulariid subfamilies (Conulariinae Walcott, 1886, Paraconulariinae Sinclair, 1952 and Ctenoconulariinae Sinclair, 1952) recognized in the Treatise on Invertebrate Paleontology ( TIP) are monophyletic. A total of 17 morphological characters were scored for 16 ingroup taxa, namely the genera Archaeoconularia, Baccaconularia, Climacoconus, Conularia, Conulariella, Conularina, Ctenoconularia, Eoconularia, Glyptoconularia, Metaconularia, Notoconularia, Paraconularia, Pseudoconularia, Reticulaconularia, Teresconularia and Vendoconularia. The extant medusozoan taxa Cubozoa, Stauromedusae, Coronatae and Semaeostomeae served as outgroups. Unweighted analysisof the data matrix yielded 1057 trees, and successive weighting analysis resulted in one of the 1057 original trees. The ingroup is monophyletic with two autapomorphies: (1) the quadrate geometry of the oral region; and (2) the presence of a mineralized (phosphatic) periderm. Within the ingroup, the clade (Vendoconularia, Teresconularia, Conularina, Eoconularia) is supported by the sinusoidal longitudinal geometry of the transverse ridges, and the much larger clade (Baccaconularia, Glyptoconularia, Metaconularia, Pseudoconularia, Conularia, Ctenoconularia, Archaeoconularia, Notoconularia, Climacoconus, Paraconularia, Reticulaconularia) is supported by the presence of external tubercles, which, however, were lost in the clade (Notoconularia, Climacoconus, Paraconularia, Reticulaconularia). As proposed by Van Iten et al. (2000), the clade (Notoconularia, Climacoconus, Paraconularia, Reticulaconularia) is supported by the termination and alternation of the transverse ribs in the corner sulcus. The previously recognized subfamilies Conulariinae, Paraconulariinae and Ctenoconulariinae were not recovered from this analysis. The diagnostic features of Conulariinae (continuation of the transverse ornament across the corner sulcus and lack of carinae) and Ctenoconulariinae ( presence of carinae) are symplesiomorphic or homoplastic, and Paraconulariinae is polyphyletic. The families Conulariellidae Kiderlen, 1937 and Conulariopsidae Sugiyama, 1942, also recognized in the TIP, are monogeneric, and since they provide no additional phylogenetic information, should be abandoned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previously, minimal work has been carried out on conulariids due to their rare occurrences and resultant biostratigraphical limitations. The palaeobiogeographical distribution of Permian conulariids suggests that they have a marked preference for cold to cool-water regions, that they are significant indicators for migration patterns, and that they can potentially provide information on the palaeogeographical configuration and movement of terranes. Permian conulariids are found in Australia, India, New Zealand, Pakistan, Iran, Afghanistan, Kashmir, China, Japan, Russia, Germany, Canada, United States of America, and Bolivia. The diversity of Permian conulariids is markedly higher in the polar regions than in the palaeoequatorial region.

Permian conulariid genera include Notoconularia Thomas 1969, Gondaconularia Waterhouse 1986, Cheliconularia Waterhouse 1986, Neoconularia Sugiyama 1942, Calloconularia Sinclair 1952, Diconularia Sinclair 1952, Paraconularia Sinclair 1940, Mesoconularia Boucek 1939 and Conularia Sowerby 1821. This paper describes two new species of conulariids: Diconularia meadepeakensis sp. nov. from the Phosphoria Formation (Guadalupian), Idaho, USA and Paraconularia kazanensis sp. nov. from the Sokian Horizon (?Roadian), Volga Region, Russia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Results of a cladistic analysis of the suborder Conulariina Miller and Gurley, 1896, a major extinct (Vendian-Triassic) group of scyphozoan cnidarians, are presented. The analysis sought to test whether the three conulariid subfamilies (Conulariinae Walcott, 1886, Paraconulariinae Sinclair, 1952 and Ctenoconulariinae Sinclair, 1952) recognized in the Treatise on Invertebrate Paleontology ( TIP) are monophyletic. A total of 17 morphological characters were scored for 16 ingroup taxa, namely the genera Archaeoconularia, Baccaconularia, Climacoconus, Conularia, Conulariella, Conularina, Ctenoconularia, Eoconularia, Glyptoconularia, Metaconularia, Notoconularia, Paraconularia, Pseudoconularia, Reticulaconularia, Teresconularia and Vendoconularia. The extant medusozoan taxa Cubozoa, Stauromedusae, Coronatae and Semaeostomeae served as outgroups. Unweighted analysisof the data matrix yielded 1057 trees, and successive weighting analysis resulted in one of the 1057 original trees. The ingroup is monophyletic with two autapomorphies: (1) the quadrate geometry of the oral region; and (2) the presence of a mineralized (phosphatic) periderm. Within the ingroup, the clade (Vendoconularia, Teresconularia, Conularina, Eoconularia) is supported by the sinusoidal longitudinal geometry of the transverse ridges, and the much larger clade (Baccaconularia, Glyptoconularia, Metaconularia, Pseudoconularia, Conularia, Ctenoconularia, Archaeoconularia, Notoconularia, Climacoconus, Paraconularia, Reticulaconularia) is supported by the presence of external tubercles, which, however, were lost in the clade (Notoconularia, Climacoconus, Paraconularia, Reticulaconularia). As proposed by Van Iten et al. (2000), the clade (Notoconularia, Climacoconus, Paraconularia, Reticulaconularia) is supported by the termination and alternation of the transverse ribs in the corner sulcus. The previously recognized subfamilies Conulariinae, Paraconulariinae and Ctenoconulariinae were not recovered from this analysis. The diagnostic features of Conulariinae (continuation of the transverse ornament across the corner sulcus and lack of carinae) and Ctenoconulariinae ( presence of carinae) are symplesiomorphic or homoplastic, and Paraconulariinae is polyphyletic. The families Conulariellidae Kiderlen, 1937 and Conulariopsidae Sugiyama, 1942, also recognized in the TIP, are monogeneric, and since they provide no additional phylogenetic information, should be abandoned.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Baccaconularia Hughes, Gunderson et Weedon, 2000, from the Furongian Series (Cambrian System) of the north-central USA, has been interpreted as a conulariid cnidarian, based on a suite of gross morphological similarities shared only with other post-Cambrian genera currently assigned to this group. Closely spaced, squarish to subrectangular facial nodes of Baccaconularia are aligned in distinct longitudinal files. Nodes also display a subtler, more or less rectilinear transverse alignment, though this pattern commonly is disrupted by offset parallel to the longitudinal files. In their shape and pattern of arrangement, the nodes of Baccaconularia are most similar to the squarish to elongate nodes of Pseudoconularia Bouček, 1939. Longitudinal node files of Baccaconularia may also be compared with the longitudinal facial ridges of Conularia cambria Walcott, 1890 from the Furongian of Wisconsin. Apical angles of Baccaconularia range from approximately 13° to 14.5°. Scanning electron imaging of B. cf. robinsoni shows that its thin, phosphatic skeleton is finely lamellar, with the thickness of individual lamellae measuring approximately 1 μm. The skeleton also exhibits microscopic circular pores and crater-like pits that range from approximately 5 to 10 μm in diameter. These pores and pits are similar in size, geometry, areal density and pattern of arrangement to those of many post-Cambrian conulariids. Microscopic circular pores are documented here for the first time in the genus Archaeoconularia Bouček, 1939 from the Upper Ordovician of the Czech Republic. Although the origin of the pores and pits is open to alternative interpretations, the discovery of these features and fine lamination in Baccaconularia strengthens the argument that this genus is a Cambrian conulariid. © 2006 Nanjing Institute of Geology and Palaeontology, CAS.