930 resultados para Controlled size
Resumo:
In this paper, we have explored a simple and new strategy to obtain quasimonodisperse Au/Pt hybrid nanoparticles (NPS) with urchinlike morphology and controlled size and Pt shell thickness. Through changing the molar ratios of Au to Pt, the Pt shell thickness of urchinlike Au/Pt hybrid NPs could be easily controlled; through changing the size of Au NPs (the size was easily controlled from similar to 3 to similar to 70 nm via simple heating of HAuCl4-citrate aqueous solution), the size of urchinlike Au/Pt hybrid NPs could be facilely dominated. It should be noted that heating the solution (100 degrees C) was very necessary for obtaining three-dimensional (3D) urchinlike nanostructures while H2PtCl6 was added to gold NPs aqueous solution in the presence of reductant (ascorbic acid). The electrocatalytic oxygen reduction reaction (ORR, a reaction greatly pursued by scientists in view of its important application in fuel cells) and the electron-transfer reaction between hexacyanoferrate(III) ions and thiosulfate ions of urchinlike Au/Pt hybrid NPs were investigated. It is found that the as-prepared urchinlike Au/Pt hybrid NPs exhibited higher catalytic activities than that of similar to Pt NPs with similar size.
Resumo:
Praziquantel has been shown to be highly effective against all known species of Schistosoma infecting humans. Spherical nanoparticulate drug carriers made of poly(D,L-lactide-co-glycolide) acid with controlled size were designed. Praziquantel, a hydrophobic molecule, was entrapped into the nanoparticles with theoretical loading varying from 10 to 30% (w/w). This investigates the effects of some process variables on the size distribution of nanoparticles prepared by emulsion-solvent evaporation method. The results show that sonication time, PLGA and drug amounts, PVA concentration, ratio between aqueous and organic phases, and the method of solvent evaporation have a significant influence on size distribution of the nanoparticles. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The size of any organism is influenced by the surrounding ecological conditions. In this study, we investigate the effects of such factors on the size spectra of planktic foraminiferal assemblages from Holocene surface sediments. We analyzed assemblages from 69 Holocene samples, which cover the major physical and chemical gradients of the oceans. On a global scale, the range of sizes in assemblages triples from the poles to the tropics. This general temperature-related size increase is interrupted by smaller sizes at temperatures characteristic of the polar and subtropical fronts, at 2°C and 17°C, respectively, as well as in upwelling areas. On a regional scale, surface water stratification, seasonality and primary productivity are highly correlated with the size patterns. Such environmentally controlled size changes are not only characteristic for entire assemblage, but also for the dominant single species.
Resumo:
Generating nano-sized materials of a controlled size and chemical composition is essential for the manufacturing of materials with enhanced properties on an industrial scale, as well as for research purposes, such as toxicological studies. Among the generation methods for airborne nanoparticles (also known as aerosolisation methods), liquid-phase techniques have been widely applied due to the simplicity of their use and their high particle production rate. The use of a collison nebulizer is one such technique, in which the atomisation takes place as a result of the liquid being sucked into the air stream and injected toward the inner walls of the nebulizer reservoir via nozzles, before the solution is dispersed. Despite the above-mentioned benefits, this method also falls victim to various sources of impurities (Knight and Petrucci 2003; W. LaFranchi, Knight et al. 2003). Since these impurities can affect the characterization of the generated nanoparticles, it is crucial to understand and minimize their effect.
Resumo:
Silver nanoplates with controlled size are synthesized by seed-mediated growth approach in the presence of citrate. These nanoplates are single crystal with a mean size of 25-1073 nm and thickness of ca. 10-22 nm. The optical in-plane dipole plasmon resonance bands of these plates can be tuned from 458 to 2400 nm. Control experiments have been explored for a more thorough understanding of the growth mechanism. It was found that the additional citrate ions in the growth solution were the key to controlling the aspect ratio of silver nanoplates. Similar to the surfactants or polymers in the solution, citrate ions could be likewise dynamically adsorbed on the growing silver nanoparticles and promote the two-dimensional growth of silver nanoparticles under certain conditions. Small silver seeds were also found to play an important role in the formation of large thin silver nanoplates, although the structure of them was not clear yet and needed further investigations.
Resumo:
Thesis submitted to Faculdade de Ciências e Tecnologia from Universidade Nova de Lisboa in partial fulfillment of the requirements for the obtention of the degree of Master of Science in Biotechnology
Resumo:
FePt magnetic nanoparticles are an important candidate material for many future magnetic applications. FePt exists as two main phases, that is, a disordered face-centered cubic (fcc) structure, which is generally prepared by chemical methods at low temperatures, and the high-temperature chemically ordered face-centered tetragonal (fct) structure. The fee FePt, with low coercivity but associated with superparamagnetic properties, may find applications as a magnetic fluid or as a nanoscale carrier for chemical or biochemical species in biomedical areas, while fct FePt is proposed for use in ultrahigh-density magnetic recording applications. However, for both of these applications an enhancement of the intrinsically weak magnetic properties, the avoidance of magnetic interferences from neighbor particles, and the improved stability of the small magnetic body remain key practical issues. We report a simple synthetic method for producing FePt nanoparticles that involves hydrothermal treatment of Fe and Pt precursors in glucose followed by calcination at 900 degrees C. This new method produces thermally stable spheroidal graphite nanoparticles (large and fullerene-like) that encapsulate or decorate FePt particles of ca. 5 nm with no severe macroscopic particle coalescence. Also, a low coercivity of the material is recorded; indicative of small magnetic interference from neighboring carbon-coated particles. Thus, this simple synthetic method involves the use of a more environmentally acceptable glucose/aqueous phase to offer a protective coating for FePt nanoparticles. It is also believed that such a synthetic protocol can be readily extended to the preparation of other graphite-coated magnetic iron alloys of controlled size, stoichiometry, and physical properties.
Resumo:
Praziquantel has been shown to be highly effective against all known species of Schistosoma infecting humans. Spherical nanoparticles made of poly(D,L-lactide-co-glycolide) acid with controlled size were designed as drug carriers. Praziquantel, a hydrophobic drug, was entrapped into the polymeric nanoparticles with 30% (w/w) of theoretical loading. The nanoparticles size was approximately of 350 nm with 66% of encapsulation efficiency. The everted gut sac model shows to be efficient to evaluate the drug permeation through the intestinal membrane. The results show that free praziquantel presents 4-fold times more permeation than praziquantel-loaded PLGA nanoparticles and physical mixture. For this drug, in special, this result can be interesting, since the nanoparticulate system can behave as a drug reservoir and/or to have a more localized effect in intestinal membrane for a prolonged period of time, since great amounts of parasites can be usually found in the mesenteric veins.
Resumo:
A new synthetic route for producing monodispersed and single crystal acicular goethite particles with small particle size and a high axial ratio adequate for use as a high density magnetic recording media precursor is reported. It essentially consists of the hydrolysis of alkaline Fe-III suspensions in the presence of carbonate by a three-step procedure, the formation of ferrihydrite primary particles, the ferrihydrite dissolution and nucleation of goethite, and the growth of the goethite nuclei. Changing the temperature of heating during ageing achieved a separation of the two last stages. X-Ray diffraction, transmission electron microscopy, infrared spectroscopy and surface area data have been used to determine the mechanism responsible for the formation of goethite particles with controlled size and shape. The best conditions to prepare monodispersed goethite particles have been established. The results show that uniform goethite particles of (a) 60 nm length with an axial ratio of 6 and (b) 230 nm length with a high axial ratio of 10, can be obtained by using an [OH]/[Fe] molar ratio of 0.35 in the initial suspensions with carbonate or sodium hydroxide, respectively. The [OH]/[Fe] molar ratio determines the particle size and elongation by controlling the hydrolysis reaction rate, while the carbonate ions promote a constant [OH] in the solution, keeping the pH around 10 during the entire synthesis process. This procedure, associated with the appropriate temperature control, leads, under certain conditions, to highly homogeneous goethite particles with sizes smaller than those obtained using sodium hydroxide with the same [OH]/[Fe] ratio.
Resumo:
ITO nanowires were synthesized by carbothermal reduction process, using a co-evaporation method, and have controlled size, shape, and chemical composition. The electrical measurements of nanowires showed they have a resistance of about 102 Ω. In order to produce nanocomposites films, nanowires were dispersed in toluene using an ultrasonic cleaner, so the PMMA polymer was added, and the system was kept under agitation up to obtain a clear suspension. The PMMA polymer was filled with 1, 2, 5 and 10% in weight of nanowires, and the films were done by tape casting. The results showed that the electrical resistance of nanocomposites changed by over 7 orders of magnitude by increasing the amount of filler, and using 5 wt% of filler the composite resistance decreased from 1010 Ω to about 104 Ω, which means that percolation threshold of wires occurred at this concentration. This is an interesting result once for nanocomposites filled with ITO nanoparticles is necessary about 18% in weight to obtain percolation. The addition of filler up to 10 wt% decreased the resistance of the composite to 103 Ω, which is a value close to the resistance of wires. The composites were also analyzed by transmission electron microscopy (TEM), and the TEM results are in agreement with the electrical ones about percolation of nanowires. These results are promising once indicates that is possible to produce conductive and transparent in the visible range films by the addition of ITO nanowires in a polymeric matrix using a simple route. © 2011 Materials Research Society.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report the effects of a synthetic peptide designed to act as a nuclear localization signal on the treatment of tuberculosis. The peptide contains 21 amino acid residues with the following specific domains: nuclear localization signal from SV 40T, cationic shuttle sequence, and cysteamide group at the C-terminus. The peptide was complexed with the plasmid DNAhsp65 and incorporated into cationic liposomes, forming a pseudo-ternary complex. The same cationic liposomes, composed of egg chicken L-alpha-phosphatidylcholine, 1,2-dioleoyl-3-trimethylammonium-propane, and 1,2-dioleoyl-3-trimethylammonium-propane (2:1:1 M), were previously evaluated as a gene carrier for tuberculosis immunization protocols with DNAhsp65. The pseudo-ternary complex presented a controlled size (250 nm), spherical-like shape, and various lamellae in liposomes as evaluated by transmission electron microscopy. An assay of fluorescence probe accessibility confirmed insertion of the peptide/DNA into the liposome structure. Peptide addition conferred no cytotoxicity in vitro, and similar therapeutic effects against tuberculosis were seen with four times less DNA compared with naked DNA treatment. Taken together, the results indicate that the pseudo-ternary complex is a promising gene vaccine for tuberculosis treatment. This work contributes to the development of multifunctional nanostructures in the search for strategies for in vivo DNA delivery. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (similar to 40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.
Resumo:
During the last years we assisted to an exponential growth of scientific discoveries for catalysis by gold and many applications have been found for Au-based catalysts. In the literature there are several studies concerning the use of gold-based catalysts for environmental applications and good results are reported for the catalytic combustion of different volatile organic compounds (VOCs). Recently it has also been established that gold-based catalysts are potentially capable of being effectively employed in fuel cells in order to remove CO traces by preferential CO oxidation in H2-rich streams. Bi-metallic catalysts have attracted increasing attention because of their markedly different properties from either of the costituent metals, and above all their enhanced catalytic activity, selectivity and stability. In the literature there are several studies demostrating the beneficial effect due to the addition of an iron component to gold supported catalysts in terms of enhanced activity, selectivity, resistence to deactivation and prolonged lifetime of the catalyst. In this work we tried to develop a methodology for the preparation of iron stabilized gold nanoparticles with controlled size and composition, particularly in terms of obtaining an intimate contact between different phases, since it is well known that the catalytic behaviour of multi-component supported catalysts is strongly influenced by the size of the metal particles and by their reciprocal interaction. Ligand stabilized metal clusters, with nanometric dimensions, are possible precursors for the preparation of catalytically active nanoparticles with controlled dimensions and compositions. Among these, metal carbonyl clusters are quite attractive, since they can be prepared with several different sizes and compositions and, moreover, they are decomposed under very mild conditions. A novel preparation method was developed during this thesis for the preparation of iron and gold/iron supported catalysts using bi-metallic carbonyl clusters as precursors of highly dispersed nanoparticles over TiO2 and CeO2, which are widely considered two of the most suitable supports for gold nanoparticles. Au/FeOx catalysts were prepared by employing the bi-metallic carbonyl cluster salts [NEt4]4[Au4Fe4(CO)16] (Fe/Au=1) and [NEt4][AuFe4(CO)16] (Fe/Au=4), and for comparison FeOx samples were prepared by employing the homometallic [NEt4][HFe3(CO)11] cluster. These clusters were prepared by Prof. Longoni research group (Department of Physical and Inorganic Chemistry- University of Bologna). Particular attention was dedicated to the optimization of a suitable thermal treatment in order to achieve, apart from a good Au and Fe metal dispersion, also the formation of appropriate species with good catalytic properties. A deep IR study was carried out in order to understand the physical interaction between clusters and different supports and detect the occurrence of chemical reactions between them at any stage of the preparation. The characterization by BET, XRD, TEM, H2-TPR, ICP-AES and XPS was performed in order to investigate the catalysts properties, whit particular attention to the interaction between Au and Fe and its influence on the catalytic activity. This novel preparation method resulted in small gold metallic nanoparticles surrounded by highly dispersed iron oxide species, essentially in an amorphous phase, on both TiO2 and CeO2. The results presented in this thesis confirmed that FeOx species can stabilize small Au particles, since keeping costant the gold content but introducing a higher iron amount a higher metal dispersion was achieved. Partial encapsulation of gold atoms by iron species was observed since the Au/Fe surface ratio was found much lower than bulk ratio and a strong interaction between gold and oxide species, both of iron oxide and supports, was achieved. The prepared catalysts were tested in the total oxidation of VOCs, using toluene and methanol as probe molecules for aromatics and alchols, respectively, and in the PROX reaction. Different performances were observed on titania and ceria catalysts, on both toluene and methanol combustion. Toluene combustion on titania catalyst was found to be enhanced increasing iron loading while a moderate effect on FeOx-Ti activity was achieved by Au addition. In this case toluene combustion was improved due to a higher oxygen mobility depending on enhanced oxygen activation by FeOx and Au/FeOx dispersed on titania. On the contrary ceria activity was strongly decreased in the presence of FeOx, while the introduction of gold was found to moderate the detrimental effect of iron species. In fact, excellent ceria performances are due to its ability to adsorb toluene and O2. Since toluene activation is the determining factor for its oxidation, the partial coverage of ceria sites, responsible of toluene adsorption, by FeOx species finely dispersed on the surface resulted in worse efficiency in toluene combustion. Better results were obtained for both ceria and titania catalysts on methanol total oxidation. In this case, the performances achieved on differently supported catalysts indicate that the oxygen mobility is the determining factor in this reaction. The introduction of gold on both TiO2 and CeO2 catalysts, lead to a higher oxygen mobility due to the weakening of both Fe-O and Ce-O bonds and consequently to enhanced methanol combustion. The catalytic activity was found to strongly depend on oxygen mobility and followed the same trend observed for catalysts reducibility. Regarding CO PROX reaction, it was observed that Au/FeOx titania catalysts are less active than ceria ones, due to the lower reducibility of titania compared to ceria. In fact the availability of lattice oxygen involved in PROX reaction is much higher in the latter catalysts. However, the CO PROX performances observed for ceria catalysts are not really high compared to data reported in literature, probably due to the very low Au/Fe surface ratio achieved with this preparation method. CO preferential oxidation was found to strongly depend on Au particle size but also on surface oxygen reducibility, depending on the different oxide species which can be formed using different thermal treatment conditions or varying the iron loading over the support.
Resumo:
In my Ph.D research, a wet chemistry-based organic solution phase reduction method was developed, and was successfully applied in the preparation of a series of advanced electro-catalysts, including 0-dimensional (0-D) Pt, Pd, Au, and Pd-Ni nanoparticles (NPs), 1-D Pt-Fe nanowires (NWs) and 2-D Pd-Fe nanoleaves (NLs), with controlled size, shape, and morphology. These nanostructured catalysts have demonstrated unique electro-catalytic functions towards electricity production and biorenewable alcohol conversion. The molecular oxygen reduction reaction (ORR) is a long-standing scientific issue for fuel cells due to its sluggish kinetics and the poor catalyst durability. The activity and durability of an electro-catalyst is strongly related with its composition and structure. Based on this point, Pt-Fe NWs with a diameter of 2 - 3 nm were accurately prepared. They have demonstrated a high durability in sulfuric acid due to its 1-D structure, as well as a high ORR activity attributed to its tuned electronic structure. By substituting Pt with Pd using a similar synthesis route, Pd-Fe NLs were prepared and demonstrated a higher ORR activity than Pt and Pd NPs catalysts in the alkaline electrolyte. Recently, biomass-derived alcohols have attracted enormous attention as promising fuels (to replace H2) for low-temperature fuel cells. From this point of view, Pd-Ni NPs were prepared and demonstrated a high electro-catalytic activity towards ethanol oxidation. Comparing to ethanol, the biodiesel waste glycerol is more promising due to its low price and high reactivity. Glycerol (and crude glycerol) was successfully applied as the fuel in an Au-anode anion-exchange membrane fuel cell (AEMFC). By replacing Au with a more active Pt catalyst, simultaneous generation of both high power-density electricity and value-added chemicals (glycerate, tartronate, and mesoxalate) from glycerol was achieved in an AEMFC. To investigate the production of valuable chemicals from glycerol electro-oxidation, two anion-exchange membrane electro-catalytic reactors were designed. The research shows that the electro-oxidation product distribution is strongly dependent on the anode applied potential. Reaction pathways for the electro-oxidation of glycerol on Au/C catalyst have been elucidated: continuous oxidation of OH groups (to produce tartronate and mesoxalate) is predominant at lower potentials, while C-C cleavage (to produce glycolate) is the dominant reaction path at higher potentials.