998 resultados para Controlled fusion.
Resumo:
Includes index.
Resumo:
Includes index.
Resumo:
ate studies(2) and fusion energy research(3,4). Laser-driven implosions of spherical polymer shells have, for example, achieved an increase in density of 1,000 times relative to the solid state(5). These densities are large enough to enable controlled fusion, but to achieve energy gain a small volume of compressed fuel (known as the 'spark') must be heated to temperatures of about 10(8) K (corresponding to thermal energies in excess of 10 keV). In the conventional approach to controlled fusion, the spark is both produced and heated by accurately timed shock waves(4), but this process requires both precise implosion symmetry and a very large drive energy. In principle, these requirements can be significantly relaxed by performing the compression and fast heating separately(6-10); however, this 'fast ignitor' approach(7) also suffers drawbacks, such as propagation losses and deflection of the ultra-intense laser pulse by the plasma surrounding the compressed fuel. Here we employ a new compression geometry that eliminates these problems; we combine production of compressed matter in a laser-driven implosion with picosecond-fast heating by a laser pulse timed to coincide with the peak compression. Our approach therefore permits efficient compression and heating to be carried out simultaneously, providing a route to efficient fusion energy production.
Resumo:
Trends and focii of interest in atomic modelling and data are identified in connection with recent observations and experiments in fusion and astrophysics. In the fusion domain, spectral observations are included of core, beam penetrated and divertor plasma. The helium beam experiments at JET and the studies with very heavy species at ASDEX and JET are noted. In the astrophysics domain, illustrations are given from the SOHO and CHANDRA spacecraft which span from the solar upper atmosphere, through soft x-rays from comets to supernovae remnants. It is shown that non-Maxwellian, dynamic and possibly optically thick regimes must be considered. The generalized collisional-radiative model properly describes the collisional regime of most astrophysical and laboratory fusion plasmas and yields self-consistent derived data for spectral emission, power balance and ionization state studies. The tuning of this method to routine analysis of the spectral observations is described. A forward look is taken as to how such atomic modelling, and the atomic data which underpin it, ought to evolve to deal with the extended conditions and novel environments of the illustrations. It is noted that atomic physics influences most aspects of fusion and astrophysical plasma behaviour but the effectiveness of analysis depends on the quality of the bi-directional pathway from fundamental data production through atomic/plasma model development to the confrontation with experiment. The principal atomic data capability at JET, and other fusion and astrophysical laboratories, is supplied via the Atomic Data and Analysis Structure (ADAS) Project. The close ties between the various experiments and ADAS have helped in this path of communication.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
Dry-wall laser inertial fusion (LIF) chambers will have to withstand strong bursts of fast charged particles which will deposit tens of kJ m−2 and implant more than 1018 particles m−2 in a few microseconds at a repetition rate of some Hz. Large chamber dimensions and resistant plasma-facing materials must be combined to guarantee the chamber performance as long as possible under the expected threats: heating, fatigue, cracking, formation of defects, retention of light species, swelling and erosion. Current and novel radiation resistant materials for the first wall need to be validated under realistic conditions. However, at present there is a lack of facilities which can reproduce such ion environments. This contribution proposes the use of ultra-intense lasers and high-intense pulsed ion beams (HIPIB) to recreate the plasma conditions in LIF reactors. By target normal sheath acceleration, ultra-intense lasers can generate very short and energetic ion pulses with a spectral distribution similar to that of the inertial fusion ion bursts, suitable to validate fusion materials and to investigate the barely known propagation of those bursts through background plasmas/gases present in the reactor chamber. HIPIB technologies, initially developed for inertial fusion driver systems, provide huge intensity pulses which meet the irradiation conditions expected in the first wall of LIF chambers and thus can be used for the validation of materials too.
Resumo:
"TID-3506 Physics."
Resumo:
"Indexes prepared by Division of Technical Information Extension."
Resumo:
"September 1957."
Resumo:
"Controlled Thermonuclear Processes ; Distributed according to TID-4500 (15th Ed.)."
Resumo:
A total of 126 annotated references to unclassified reports and journal articles in presented, covering research and development conducted in the United States in the field of controlled thermonuclear reactions. Author, subject, and report number indexes are included.
Resumo:
"January 1961 [OTI Issuance Date]."