957 resultados para Controlled Monte Carlo Data Generation
Resumo:
The use of Mahalanobis squared distance–based novelty detection in statistical damage identification has become increasingly popular in recent years. The merit of the Mahalanobis squared distance–based method is that it is simple and requires low computational effort to enable the use of a higher dimensional damage-sensitive feature, which is generally more sensitive to structural changes. Mahalanobis squared distance–based damage identification is also believed to be one of the most suitable methods for modern sensing systems such as wireless sensors. Although possessing such advantages, this method is rather strict with the input requirement as it assumes the training data to be multivariate normal, which is not always available particularly at an early monitoring stage. As a consequence, it may result in an ill-conditioned training model with erroneous novelty detection and damage identification outcomes. To date, there appears to be no study on how to systematically cope with such practical issues especially in the context of a statistical damage identification problem. To address this need, this article proposes a controlled data generation scheme, which is based upon the Monte Carlo simulation methodology with the addition of several controlling and evaluation tools to assess the condition of output data. By evaluating the convergence of the data condition indices, the proposed scheme is able to determine the optimal setups for the data generation process and subsequently avoid unnecessarily excessive data. The efficacy of this scheme is demonstrated via applications to a benchmark structure data in the field.
Resumo:
This article presents the field applications and validations for the controlled Monte Carlo data generation scheme. This scheme was previously derived to assist the Mahalanobis squared distance–based damage identification method to cope with data-shortage problems which often cause inadequate data multinormality and unreliable identification outcome. To do so, real-vibration datasets from two actual civil engineering structures with such data (and identification) problems are selected as the test objects which are then shown to be in need of enhancement to consolidate their conditions. By utilizing the robust probability measures of the data condition indices in controlled Monte Carlo data generation and statistical sensitivity analysis of the Mahalanobis squared distance computational system, well-conditioned synthetic data generated by an optimal controlled Monte Carlo data generation configurations can be unbiasedly evaluated against those generated by other set-ups and against the original data. The analysis results reconfirm that controlled Monte Carlo data generation is able to overcome the shortage of observations, improve the data multinormality and enhance the reliability of the Mahalanobis squared distance–based damage identification method particularly with respect to false-positive errors. The results also highlight the dynamic structure of controlled Monte Carlo data generation that makes this scheme well adaptive to any type of input data with any (original) distributional condition.
Resumo:
This research has successfully developed a novel synthetic structural health monitoring system model that is cost-effective and flexible in sensing and data acquisition; and robust in the structural safety evaluation aspect for the purpose of long-term and frequent monitoring of large-scale civil infrastructure during their service lives. Not only did it establish a real-world structural monitoring test-bed right at the heart of QUT Gardens Point Campus but it can also facilitate reliable and prompt protection for any built infrastructure system as well as the user community involved.
Resumo:
The Monte Carlo DICOM Tool-Kit (MCDTK) is a software suite designed for treatment plan dose verification, using the BEAMnrc and DOSXYZnrc Monte Carlo codes. MCDTK converts DICOM-format treatment plan information into Monte Carlo input files and compares the results of Monte Carlo treatment simulations with conventional treatment planning dose calculations. In this study, a treatment is planned using a commercial treatment planning system, delivered to a pelvis phantom containing ten thermoluminescent dosimeters and simulated using BEAMnrc and DOSXYZnrc using inputs derived from MCDTK. The dosimetric accuracy of the Monte Carlo data is then evaluated via comparisons with the dose distribution obtained from the treatment planning system as well as the in-phantom point dose measurements. The simulated beam arrangement produced by MCDTK is found to be in geometric agreement with the planned treatment. An isodose display generated from the Monte Carlo data by MCDTK shows general agreement with the isodose display obtained from the treatment planning system, except for small regions around density heterogeneities in the phantom, where the pencil-beam dose calculation performed by the treatment planning systemis likely to be less accurate. All point dose measurements agree with the Monte Carlo data obtained using MCDTK, within confidence limits, and all except one of these point dose measurements show closer agreement with theMonte Carlo data than with the doses calculated by the treatment planning system. This study provides a simple demonstration of the geometric and dosimetric accuracy ofMonte Carlo simulations based on information from MCDTK.
Resumo:
Monte Carlo simulations have been carried out to study the effect of temperature on the growth kinetics of a circular grain. This work demonstrates the importance of roughening fluctuations on the growth dynamics. Since the effect of thermal fluctuations is stronger in d =2 than in d =3, as predicted by d =3 theories of domain kinetics, the circular domain shrinks linearly with time as A (t)=A(0)-αt, where A (0) and A(t) are the initial and instantaneous areas, respectively. However, in contrast to d =3, the slope α is strongly temperature dependent for T≥0.6TC. An analytical theory which considers the thermal fluctuations agrees with the T dependence of the Monte Carlo data in this regime, and this model show that these fluctuations are responsible for the strong temperature dependence of the growth rate for d =2. Our results are particularly relevant to the problem of domain growth in surface science
Resumo:
A RET network consists of a network of photo-active molecules called chromophores that can participate in inter-molecular energy transfer called resonance energy transfer (RET). RET networks are used in a variety of applications including cryptographic devices, storage systems, light harvesting complexes, biological sensors, and molecular rulers. In this dissertation, we focus on creating a RET device called closed-diffusive exciton valve (C-DEV) in which the input to output transfer function is controlled by an external energy source, similar to a semiconductor transistor like the MOSFET. Due to their biocompatibility, molecular devices like the C-DEVs can be used to introduce computing power in biological, organic, and aqueous environments such as living cells. Furthermore, the underlying physics in RET devices are stochastic in nature, making them suitable for stochastic computing in which true random distribution generation is critical.
In order to determine a valid configuration of chromophores for the C-DEV, we developed a systematic process based on user-guided design space pruning techniques and built-in simulation tools. We show that our C-DEV is 15x better than C-DEVs designed using ad hoc methods that rely on limited data from prior experiments. We also show ways in which the C-DEV can be improved further and how different varieties of C-DEVs can be combined to form more complex logic circuits. Moreover, the systematic design process can be used to search for valid chromophore network configurations for a variety of RET applications.
We also describe a feasibility study for a technique used to control the orientation of chromophores attached to DNA. Being able to control the orientation can expand the design space for RET networks because it provides another parameter to tune their collective behavior. While results showed limited control over orientation, the analysis required the development of a mathematical model that can be used to determine the distribution of dipoles in a given sample of chromophore constructs. The model can be used to evaluate the feasibility of other potential orientation control techniques.
Resumo:
In this paper we present a sequential Monte Carlo algorithm for Bayesian sequential experimental design applied to generalised non-linear models for discrete data. The approach is computationally convenient in that the information of newly observed data can be incorporated through a simple re-weighting step. We also consider a flexible parametric model for the stimulus-response relationship together with a newly developed hybrid design utility that can produce more robust estimates of the target stimulus in the presence of substantial model and parameter uncertainty. The algorithm is applied to hypothetical clinical trial or bioassay scenarios. In the discussion, potential generalisations of the algorithm are suggested to possibly extend its applicability to a wide variety of scenarios
Resumo:
The effects of tumour motion during radiation therapy delivery have been widely investigated. Motion effects have become increasingly important with the introduction of dynamic radiotherapy delivery modalities such as enhanced dynamic wedges (EDWs) and intensity modulated radiation therapy (IMRT) where a dynamically collimated radiation beam is delivered to the moving target, resulting in dose blurring and interplay effects which are a consequence of the combined tumor and beam motion. Prior to this work, reported studies on the EDW based interplay effects have been restricted to the use of experimental methods for assessing single-field non-fractionated treatments. In this work, the interplay effects have been investigated for EDW treatments. Single and multiple field treatments have been studied using experimental and Monte Carlo (MC) methods. Initially this work experimentally studies interplay effects for single-field non-fractionated EDW treatments, using radiation dosimetry systems placed on a sinusoidaly moving platform. A number of wedge angles (60º, 45º and 15º), field sizes (20 × 20, 10 × 10 and 5 × 5 cm2), amplitudes (10-40 mm in step of 10 mm) and periods (2 s, 3 s, 4.5 s and 6 s) of tumor motion are analysed (using gamma analysis) for parallel and perpendicular motions (where the tumor and jaw motions are either parallel or perpendicular to each other). For parallel motion it was found that both the amplitude and period of tumor motion affect the interplay, this becomes more prominent where the collimator tumor speeds become identical. For perpendicular motion the amplitude of tumor motion is the dominant factor where as varying the period of tumor motion has no observable effect on the dose distribution. The wedge angle results suggest that the use of a large wedge angle generates greater dose variation for both parallel and perpendicular motions. The use of small field size with a large tumor motion results in the loss of wedged dose distribution for both parallel and perpendicular motion. From these single field measurements a motion amplitude and period have been identified which show the poorest agreement between the target motion and dynamic delivery and these are used as the „worst case motion parameters.. The experimental work is then extended to multiple-field fractionated treatments. Here a number of pre-existing, multiple–field, wedged lung plans are delivered to the radiation dosimetry systems, employing the worst case motion parameters. Moreover a four field EDW lung plan (using a 4D CT data set) is delivered to the IMRT quality control phantom with dummy tumor insert over four fractions using the worst case parameters i.e. 40 mm amplitude and 6 s period values. The analysis of the film doses using gamma analysis at 3%-3mm indicate the non averaging of the interplay effects for this particular study with a gamma pass rate of 49%. To enable Monte Carlo modelling of the problem, the DYNJAWS component module (CM) of the BEAMnrc user code is validated and automated. DYNJAWS has been recently introduced to model the dynamic wedges. DYNJAWS is therefore commissioned for 6 MV and 10 MV photon energies. It is shown that this CM can accurately model the EDWs for a number of wedge angles and field sizes. The dynamic and step and shoot modes of the CM are compared for their accuracy in modelling the EDW. It is shown that dynamic mode is more accurate. An automation of the DYNJAWS specific input file has been carried out. This file specifies the probability of selection of a subfield and the respective jaw coordinates. This automation simplifies the generation of the BEAMnrc input files for DYNJAWS. The DYNJAWS commissioned model is then used to study multiple field EDW treatments using MC methods. The 4D CT data of an IMRT phantom with the dummy tumor is used to produce a set of Monte Carlo simulation phantoms, onto which the delivery of single field and multiple field EDW treatments is simulated. A number of static and motion multiple field EDW plans have been simulated. The comparison of dose volume histograms (DVHs) and gamma volume histograms (GVHs) for four field EDW treatments (where the collimator and patient motion is in the same direction) using small (15º) and large wedge angles (60º) indicates a greater mismatch between the static and motion cases for the large wedge angle. Finally, to use gel dosimetry as a validation tool, a new technique called the „zero-scan method. is developed for reading the gel dosimeters with x-ray computed tomography (CT). It has been shown that multiple scans of a gel dosimeter (in this case 360 scans) can be used to reconstruct a zero scan image. This zero scan image has a similar precision to an image obtained by averaging the CT images, without the additional dose delivered by the CT scans. In this investigation the interplay effects have been studied for single and multiple field fractionated EDW treatments using experimental and Monte Carlo methods. For using the Monte Carlo methods the DYNJAWS component module of the BEAMnrc code has been validated and automated and further used to study the interplay for multiple field EDW treatments. Zero-scan method, a new gel dosimetry readout technique has been developed for reading the gel images using x-ray CT without losing the precision and accuracy.
Resumo:
Here we present a sequential Monte Carlo approach to Bayesian sequential design for the incorporation of model uncertainty. The methodology is demonstrated through the development and implementation of two model discrimination utilities; mutual information and total separation, but it can also be applied more generally if one has different experimental aims. A sequential Monte Carlo algorithm is run for each rival model (in parallel), and provides a convenient estimate of the marginal likelihood (of each model) given the data, which can be used for model comparison and in the evaluation of utility functions. A major benefit of this approach is that it requires very little problem specific tuning and is also computationally efficient when compared to full Markov chain Monte Carlo approaches. This research is motivated by applications in drug development and chemical engineering.
Resumo:
Background: Plotless density estimators are those that are based on distance measures rather than counts per unit area (quadrats or plots) to estimate the density of some usually stationary event, e.g. burrow openings, damage to plant stems, etc. These estimators typically use distance measures between events and from random points to events to derive an estimate of density. The error and bias of these estimators for the various spatial patterns found in nature have been examined using simulated populations only. In this study we investigated eight plotless density estimators to determine which were robust across a wide range of data sets from fully mapped field sites. They covered a wide range of situations including animal damage to rice and corn, nest locations, active rodent burrows and distribution of plants. Monte Carlo simulations were applied to sample the data sets, and in all cases the error of the estimate (measured as relative root mean square error) was reduced with increasing sample size. The method of calculation and ease of use in the field were also used to judge the usefulness of the estimator. Estimators were evaluated in their original published forms, although the variable area transect (VAT) and ordered distance methods have been the subjects of optimization studies. Results: An estimator that was a compound of three basic distance estimators was found to be robust across all spatial patterns for sample sizes of 25 or greater. The same field methodology can be used either with the basic distance formula or the formula used with the Kendall-Moran estimator in which case a reduction in error may be gained for sample sizes less than 25, however, there is no improvement for larger sample sizes. The variable area transect (VAT) method performed moderately well, is easy to use in the field, and its calculations easy to undertake. Conclusion: Plotless density estimators can provide an estimate of density in situations where it would not be practical to layout a plot or quadrat and can in many cases reduce the workload in the field.
Resumo:
Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.