924 resultados para Control region
Resumo:
A stretch of 71 nucleotides in a 1.2 kilobase pair Pst I fragment of rice DNA was identified as tRNA~ gene by hybridization and nucleotide sequence analyses. The hybridization of genomic DNA with the tRNA gene showed that there are about 10 glycine tRNA genes per diploid rice genome. The 3' and 5' internal control regions, where RNA polymerase III and transcription factors bind, were found to be present in the coding sequence. The gene was transcribed into a 4S product in an yeast cell-free extract. The substitution of 5' internal control region with analogous sequences from either M13mpl9 or M13mpl8 DNA did not affect the transcription of the gene in vitro. The changes in three highly conserved nucleotides in the consensus 5' internal control region (RGYNNARYGG; R = purine, Y = pyrimidine, N = any nucleotide) did not affect transcription showing that these nucleotides are not essential for promotion of transcription. There were two 16 base pair repeats, 'TGTTTGTTTCAGCTTA' at - 130 and - 375 positions upstream from the start of the gene. Deletion of 5' flanking sequences including the 16 base pair repeat at - 375 showed increased transcription indicating that these sequences negatively modulate the expression of the gene.
Resumo:
通过线粒体部分控制区DNA 序列数据探讨7 种猕猴属物种的分子系统发育关系。结果表明熊猴的 核苷酸多样度最高, 而藏酋猴核苷酸多样度较低。基于控制区序列数据所构建的最大似然树, 不考虑食蟹猴的 位置, 7 种猕猴物种可粗略地分为3 个种组, 即狮尾猴组(包括北平顶猴) 、头巾猴组(包括红面猴、熊猴和藏 酋猴) 和食蟹猴组(包括恒河猴和台湾猴) 。与前人( Fooden & Lanyon , 1989 ; Tosi et al , 2003a ; Deinard & Smith , 2001 ; Evans et al , 1999 ; Hayasaka et al , 1996 ; Morales &Melnick , 1998) 的结果不同, 我们的结果支 持食蟹猴比北平顶猴分化早的假设; 东部恒河猴(相对于台湾猴) 和东部熊猴(相对于藏酋猴) 出现并系。与 Y染色体、等位酶、核基因以及部分形态学数据推测的结果(Delson , 1980 ; Fooden &Lanyon , 1989 ; Fooden , 1990 ; Tosi et al , 2000 , 2003a , b ; Deinard & Smith , 2001) 一致, 红面猴应归于头巾猴组, 但此结论与前人 (Hayasaka et al , 1996 ; Morales &Melnick , 1998 ; Tosi et al , 2003a) 依据线粒体得到的结果有较大分歧。
Resumo:
Mitochondrial DNA (mtDNA) hypervariable segment I sequences (HVSI, 471 bp) of the control region and partial cytochrome b sequences (Cytb, 403 bp) were analyzed in three tentative species of the genus Mystacoleucus in China (M. chilopterus, M. marginatus, and M. lepturus). Not more than two mutations were found in both the HVSI and Cytb fragments among the samples from M. chilopterus and M. marginatus. However, M. lepturus differed from each of them by at least 25 mutations in Cytb and 51 mutations in HVSI. Moreover, the HVSI sequence variation within M. lepturus was larger than that between M. chilopterus and M. marginatus. Given that M. chilopterus and M. marginatus are very similar in morphology, it is reasonable to consider M. chilopterus and M. marginatus as conspecific. Our results also suggest a recent radiation of M. marginatus from downstream to upstream of the Lancangjiang (Mekong) River.
Resumo:
A fragment of mitochondrial DNA (mtDNA) control region (similar to700 bp) was sequenced in 104 individuals from 20 breeds (three Chinese domestic breeds, five recently derived breeds and 12 introduced breeds) of domestic rabbits, Oryctolagus cuniculus . Nineteen sites were polymorphic, with 18 transitions and one insertion/deletion, and eight haplotypes (A1, A2, A3, A4, A5, A6, A7 and A8) were identified. Haplotype A1 was the most common and occurred in 89 individuals. In the 25 Chinese rabbits, only haplotype A1 was observed, while four haplotypes (A1, A3, A5 and A6) were found in 26 recently derived individuals. Haplotype A2 was shared by seven individuals among three introduced strains. The other six haplotypes accounted for 0. 96-1. 92% of the animals. Combined with the published sequences of European rabbits, a reduced median-joining network was constructed. The Chinese rabbit mtDNAs were scattered into two clusters of European rabbits. These results suggest that the (so-called) Chinese rabbits were introduced from Europe. Genetic diversity in Chinese rabbits was very low.
Resumo:
Bengal slow lorises (Nycticebus bengalensis) and pygmy slow lorises (Nycticebus pygmaeus) are nocturnal which creates difficulties to study them in the field. There is a scarcity of data on them and their population genetics are poorly understood. We sequ
Resumo:
The phylogenetic relationship of several subspecies of Ovis ammon were analyzed by comparing DNA sequences within the entire mitochondrial D-loop region. Five putative subspecies of ammon (dalai-lamae, darwini, hodgsoni, sairensis and adamerzi) were sampled from four provinces in China [Xinjiang, Qinghai, Gansu and Xizang (Tibet)] and two (servertzovi and nigrimontana) from Uzbekistan. The argalis sampled represent most of the currently recognized putative Subspecies of argali. Analysis of mtDNA sequences revealed high variability within ammon (7.7%), ranging from 2.4 to 11.5%. MaxiMUM-Parsimony tree indicated that nigrimontana from Uzbekistan diverged First, followed by severtzovi from Uzbekistan. The dispersal of argalis into China gave rise to three clades, suggesting that the argali originated in Western Asia and then dispersed throughout the central Asian highlands on a southeastward course. Among the Chinese argalis, mtDNA analysis places dalailamae genetically closer to hodgsoni than to darwini. Severtzovi and.. nigrimontana are two separate subspecies and genetically distinct from the Chinese argali.
Resumo:
We find no genetic variation at 550bp of mtDNA control region among 55 Hainan Eld's deer in an island population that has suffered recent population contractions. Congeneric species show high levels of variation at this locus. We use a simulation approach to test the likelihood of various bottleneck scenarios, and show, in the context of what is known about the recent demographic history of this population, that there are credible scenarios for a bottleneck driven by hunting pressure in the 1960s that could account for the lack of variation at this locus.
Resumo:
The mitochondrial DNA (mtDNA) control region is believed to play an important biological role in mtDNA replication. Large deletions in this region are rarely found, but when they do occur they might be expected to interfere with the replication of the molecule, thus leading to a reduction of mtDNA copy number. During a survey for mtDNA sequence variations in 5,559 individuals from the general Chinese population and 2,538 individuals with medical disorders, we identified a 50-bp deletion (m.298_347del50) in the mtDNA control region in a member of a healthy Han Chinese family belonging to haplogroup B4c1b2, as suggested by complete mtDNA genome sequencing. This deletion removes the conserved sequence block II (CSBII; region 299-315) and the replication primer location (region 317-321). However, quantification of the mtDNA copy number in this subject showed a value within a range that was observed in 20 healthy subjects without the deletion. The deletion was detected in the hair samples of the maternal relatives of the subject and exhibited variable heteroplasmy. Our current observation, together with a recent report for a benign 154-bp deletion in the mtDNA control region, suggests that the control of mtDNA replication may be more complex than we had thought. Hum Mutat 31:538-543, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
It is widely accepted that mitochondrial DNA (mtDNA) control region evolves faster than protein encoding genes with few exceptions. In the present study, we sequenced the mitochondrial cytochrome b gene (cyt b) and control region (CR) and compared their rates in 93 specimens representing 67 species of loaches and some related taxa in the Cobitoidea (Order Cypriniformes). The results showed that sequence divergences of the CR were broadly higher than those of the cyt b (about 1.83 times). However, in considering only closely related species, CR sequence evolution was slower than that of cyt b gene (ratio of CR/cyt b is 0.78), a pattern that is found to be very common in Cypriniformes. Combined data of the cyt b and CR were used to estimate the phylogenetic relationship of the Cobitoidea by maximum parsimony, neighbor-joining, and Bayesian methods. With Cyprinus carpio and Danio rerio as outgroups, three analyses identified the same four lineages representing four subfamilies of loaches, with Botiinae on the basal-most clade. The phylogenctic relationship of the Cobitoidea was ((Catostomidae + Gyrinocheilidae) + (Botiinae + (Balitorinae + (Cobitinae + Nemacheilinae)))), which indicated that Sawada's Cobitidae (including Cobitinae and Botiinae) was not monophyletic. Our molecular phylogenetic analyses are in very close agreement with the phylogenetic results based on the morphological data proposed by Nalbant and Bianco, wherein these four subfamilies were elevated to the family level as Botiidae, Balitoridae, Cobitidae, and Nemacheilidae. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Rhinogobio is a cyprinid genus restricted to the river drainages of China. Sequences of the mitochondrial DNA control region were determined for four Rhinogohio species and one outgroup species, Coreius heterodon, to investigate the phylogenetic relationships within the genus. The control region of the Rhinogobio species ranges from 922 to 930 base pairs and comprises 930 base pairs in Coreius. Our phylogenetic analysis indicates two distinct lineages in the genus Rhinogobio. The first includes only R. ventralis. In the second lineage there are three species, two closely related species R. cylindricus and R. hunanensis, and their sister species R. typus. An analysis of character adaptations suggests an evolutionary trend in this genus towards a relatively lower body and caudal peduncle depth, a shorter dorsal fin, and a more anterior anus. In addition, there is a trend towards shorter barbels and relatively larger eyes. Some or all of these traits may be associated with a habitat shift from fast-flowing turbid rivers to slower-flowing clear river habitats.
Resumo:
The complete cytochrome b and the control region of mtDNA (about 2070 bp in total) of 10 strains belonging to three subspecies of the common carp, including three wild subspecies (the Yangtze River wild common carp - Cyprinus carpio haematopterus, Yuanjiang River wild common carp Cyprinus carpio rubrofuscus and Volga River wild common carp - Cyprinus carpio carpio) and seven domestic strains (Xingguo red carp, Russian scattered scaled mirror carp, Qingtian carp, Japanese Koi carp, purse red carp, Big-belly carp, German mirror carp) were sequenced. Phylogenetic analysis indicated that the 10 strains form three distinct clades, corresponding to C. c. haematopterus, C. c. rubrofuscus and C. c. carpio respectively. Purse red carp, an endemic domestic strain in Jiangxi province of China, showed a higher evolution rate in comparison with the other strains of C. c. haematopterus, most probably because of intensive selection and a long history of domestication. Base variation ratios among the three subspecies varied from 0.78% (between C. c. haematopterus and C. c. rubrofuscus) to 1.47%(between C. c. carpio and C. c. rubrofuscus). The topography of the phylogenetic tree and the geographic distribution of three subspecies closely resemble each other. The divergence time between C. c. carpio and the other two subspecies was estimated to be about 0.9 Myr and about 0.5 Myr between C. c. haematopterus and C. c. rubrofuscus. Based on phylogenetic analysis, C. c. rubrofuscus might have diverged from C. c. haematopterus.
Resumo:
With 210 genera and 2010 species, Cyprinidae is the largest freshwater fish family in the world. Several papers, based on morphological and molecular data, have been published and have led to some solid conclusions, such as the close relationships between North American phoxinins and European leuciscins. However, the relationships among major subgroups of this family are still not well resolved, especially for those East Asian groups. In the present paper, the mitochondrial DNA (mtDNA) control region, 896-956 base pairs, of 17 representative species of East Asian cyprinids was sequenced and compared with those of 21 other cyprinids to study their phylogenetic relationships. After alignment, there were 1051 sites. The comparison between pairwise substitutions and HKY distances showed that the mtDNA control region was suitable for phylogenetic study. Phylogenetic analysis indicated that there are two principal lineages in Cyprinidae: Cyprinine and Leuciscine. In Cyprinine, the relationships could be a basal Labeoinae, an intermediate Cyprininae, and a diversified Barbinae (including Schizothroaxinae). In Leuciscine, Rasborinae is at the basal position; Gobioninae and Leuciscinae are sister groups; the East Asian cultrin-xenocyprinin taxa form a large monophyletic group with some small affiliated groups; and the positions of Acheilognathinae and Tincinae are still uncertain.