989 resultados para Control of joint structures


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Visual information is increasingly being used in a great number of applications in order to perform the guidance of joint structures. This paper proposes an image-based controller which allows the joint structure guidance when its number of degrees of freedom is greater than the required for the developed task. In this case, the controller solves the redundancy combining two different tasks: the primary task allows the correct guidance using image information, and the secondary task determines the most adequate joint structure posture solving the possible joint redundancy regarding the performed task in the image space. The method proposed to guide the joint structure also employs a smoothing Kalman filter not only to determine the moment when abrupt changes occur in the tracked trajectory, but also to estimate and compensate these changes using the proposed filter. Furthermore, a direct visual control approach is proposed which integrates the visual information provided by this smoothing Kalman filter. This last aspect permits the correct tracking when noisy measurements are obtained. All the contributions are integrated in an application which requires the tracking of the faces of Asperger children.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the vibration characteristics and vibration control of complex ship structures. It is shown that input mobilities of a ship structure at engine supports, due to out-of-plane force or bending moment excitations, are governed by the flexural stiffness of the engine supports. The frequency averaged input mobilities of the ship structure, due to such excitations, can be represented by those of the corresponding infinite beam. The torsional moment input mobility at the engine support can be estimated from the torsional response of the engine bed section under direct excitation. It is found that the inclusion of ship hull and deck plates in the ship structure model has little effect on the frequency-averaged response of the ship structure. This study also shows that vibration propagation in complex ship structures at low frequencies can be attenuated by imposing irregularities to the ring frame locations in ships. Vibration responses of ship structures due to machinery excitations at higher frequencies can be controlled by structural modifications of the local supporting structures such as engine beds in ships.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reduction approaches are presented for vibration control of symmetric, cyclic periodic and linking structures. The condensation of generalized coordinates, the locations of sensors and actuators, and the relation between system inputs and control forces are assumed to be set in a symmetric way so that the control system posses the same repetition as the structure considered. By employing proper transformations of condensed generalized coordinates and the system inputs, the vibration control of an entire system can be implemented by carrying out the control of a number of sub-structures, and thus the dimension of the control problem can be significantly reduced.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, several simplification methods are presented for shape control of repetitive structures such as symmetrical, rotational periodic, linear periodic, chain and axisymmetrical structures. Some special features in the differential equations governing these repetitive structures are examined by considering the whole structures. Based on the special properties of the governing equations, several methods are presented for simplifying their solution process. Finally, the static shape control of a cantilever symmetrical plate with piezoelectric actuator patches is demonstrated using the present simplification method. The result shows that present methods can effectively be used to find the optimal control voltage for shape control.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a third order shear deformation finite element model wich is applied on the active resonance control thin plate/shell laminated structures with integrated piezoelectric layers of patches, acting as sensors and actuators. The finite element model is a single layer tringular nonconforming plate/shell element with 24 degrees of freedom for he generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich are surface bonded on the laminated. The newwork method is considered to calculate the dynamic response of the laminated sructures forced to vibrate in the first natural frequency. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorithm is used, coupling the sensor and active piezoelectric layers. The model is applied to the solution of one illustrative case, and the results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with a finite formulation baserd on the classical laminated plate tehory, for active control of thin late laminated structures with integrated piezoelectric layers, acting as sensors and actuators. The control is initialized through a previuos optimization of the core of the laminated structure, in order to minimize the vibration amplitude. Also the optimization of the patches position in performed to maximize the piezoelectric actuator efficiency. the simulating annealing mthod is used for these purposes. The finite element model is a single layer triangular nonconforming plate/shell element with 18 degrees of fredom for the generalized displacements, and one electrical potential degree of freedom for each piezoelectric element layer, wich can be surface bonded or imbedded on the laminate. To achieve a mechanism of active control of the structure dynamic response, a feedback control algorirhm is used, coupling the sensor and active piezoelectric layers. To calculate the dynamic response of the laminated structures the Newmark method is considered. The model is applied in the solution of an illustrative case and the results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the problem of identification and semiactive control of smart structures subject to unknown external disturbances such as earthquake, wind, etc. The experimental setup used is a 6-story test structure equipped with shear-mode semiactive magnetorheological actuators being installed in WUSCEEL. The experimental results obtained have verified the effectiveness of the proposed control algorithms

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Linear Matrix Inequalities (LMIs) is a powerful too] that has been used in many areas ranging from control engineering to system identification and structural design. There are many factors that make LMI appealing. One is the fact that a lot of design specifications and constrains can be formulated as LMIs [1]. Once formulated in terms of LMIs a problem can be solved efficiently by convex optimization algorithms. The basic idea of the LMI method is to formulate a given problem as an optimization problem with linear objective function and linear matrix inequalities constrains. An intelligent structure involves distributed sensors and actuators and a control law to apply localized actions, in order to minimize or reduce the response at selected conditions. The objective of this work is to implement techniques of control based on LMIs applied to smart structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In many university courses such as Building Engineering or Technical Architectural, the high density of the contents included in the curriculum, make the student, after graduation, unable to develop the skills already acquired and evaluated in the disciplines of the first courses. From the Group of Educational Innovation at the Polytechnic University of Madrid (UPM) "Teaching of Structural Concrete" (GIEHE) we have conducted a study in which are valued specific skills acquired by students after the first courses of career. We have worked with students from UPM fourth-year career and with Technical Architecture students who have completed their studies and also have completed the Adaptation Course of Technical Architecture to the Building Engineer. The work is part of the Educational Innovation Project funded by the UPM "Integration of training and assessment of generic and specific skills in structural concrete" We have evaluated specific skills learned in the areas of durability and control of structural concrete structures. The results show that overall, students are not able to fully develop the skills already acquired earlier, even being these essential to their professional development. Possibly, the large amount of content taught in these degrees together with a teaching and assessment of "flat profile", ie, which are presented and evaluated with the same intensity as the fundamental and the accessory, are causes enough to cause these results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Noise and vibration in complex ship structures are becoming a prominent issue for ship building industry and ship companies due to the constant demand of building faster ships of lighter weight, and the stringent noise and libration regulation of the industry. In order to retain the full benefit of building faster ships without compromising too much on ride comfort and safety, noise and vibration control needs to be implemented. Due to the complexity of ship structures, the coupling of different wave types and multiple wave propagation paths, active control of global hull modes is difficult to implement and very expensive. Traditional passive control such as adding damping materials is only effective in the high frequency range. However, most severe damage to ship structures is caused by large structural deformation of hull structures and high dynamic stress concentration at low frequencies. The most discomfort and fatigue of passengers and the crew onboard ships is also due to the low frequency noise and vibration. Innovative approaches are therefore, required to attenuate the noise and vibration at low frequencies. This book was developed from several specialized research topics on vibration and vibration control of ship structures, mostly from the author's own PhD work at the University of Western Australia. The book aims to provide a better understanding of vibration characteristics of ribbed plate structures, plate/plate coupled structures and the mechanism governing wave propagation and attenuation in periodic and irregular ribbed structures as well as in complex ship structures. The book is designed to be a reference book for ship builders, vibro-acoustic engineers and researchers. The author also hopes that the book can stimulate more exciting future work in this area of research. It is the author's humble desire that the book can be some use for those who purchase it. This book is divided into eight chapters. Each chapter focuses on providing solution to address a particular issue on vibration problems of ship structures. A brief summary of each chapter is given in the general introduction. All chapters are inter-dependent to each other to form an integration volume on the subject of vibration and vibration control of ship structures and alike. I am in debt to many people in completing this work. In particular, I would like to thank Professor J. Pan, Dr N.H. Farag, Dr K. Sum and many others from the University of Western Australia for useful advices and helps during my times at the University and beyond. I would also like to thank my wife, Miaoling Wang, my children, Anita, Sophia and Angela Lin, for their sacrifice and continuing supports to make this work possible. Financial supports from Australian Research Council, Australian Defense Science and Technology Organization and Strategic Marine Pty Ltd at Western Australia for this work is gratefully acknowledged.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Special Issue presents a selection of papers initially presented at the 11th International Conference on Vibration Problems (ICOVP-2013), held from 9 to 12 September 2013 in Lisbon, Portugal. The main topics of this Special Issue are linear and, mainly, nonlinear dynamics, chaos and control of systems and structures and their applications in different field of science and engineering. According to the goal of the Special Issue, the selected contributions are divided into three major parts: “Vibration Problems in Vertical Transportation Systems”, “Nonlinear Dynamics, Chaos and Control of Elastic Structures” and “New Strategies and Challenges for Aerospace and Ocean Structures Dynamics and Control”.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper addresses the problem of joint identification of infinite-frequency added mass and fluid memory models of marine structures from finite frequency data. This problem is relevant for cases where the code used to compute the hydrodynamic coefficients of the marine structure does not give the infinite-frequency added mass. This case is typical of codes based on 2D-potential theory since most 3D-potential-theory codes solve the boundary value associated with the infinite frequency. The method proposed in this paper presents a simpler alternative approach to other methods previously presented in the literature. The advantage of the proposed method is that the same identification procedure can be used to identify the fluid-memory models with or without having access to the infinite-frequency added mass coefficient. Therefore, it provides an extension that puts the two identification problems into the same framework. The method also exploits the constraints related to relative degree and low-frequency asymptotic values of the hydrodynamic coefficients derived from the physics of the problem, which are used as prior information to refine the obtained models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new framework based on optimal control to define new dynamic visual controllers to carry out the guidance of any serial link structure. The proposed general method employs optimal control to obtain the desired behaviour in the joint space based on an indicated cost function which determines how the control effort is distributed over the joints. The proposed approach allows the development of new direct visual controllers for any mechanical joint system with redundancy. Finally, authors show experimental results and verifications on a real robotic system for some derived controllers obtained from the control framework.