1000 resultados para Control of breathing
Resumo:
The present study was designed to explore systematically the midbrain of unanesthetized, decerebrate anuran amphibians (bullfrogs), using chemical and electrical stimulation and midbrain transections to identify sites capable of exciting and inhibiting breathing. Ventilation was measured as fictive motor output from the mandibular branch of the trigeminal nerve and the laryngeal branch of the vagus nerve. The results of our transection studies suggest that, under resting conditions, the net effect of inputs from sites within the rostral half of the midbrain is to increase fictive breathing frequency, whereas inputs from sites within the caudal half of the midbrain have no net effect on fictive breathing frequency but appear to act on the medullary central rhythm generator to produce episodic breathing. The results of our stimulation experiments indicate that the principal sites in the midbrain that are capable of exciting or inhibiting the fictive frequency of lung ventilation, and potentially clustering breaths into episodes, appear to be those primarily involved in visual and auditory integration, motor functions, and attentional state.
Resumo:
Despite recent advances, the mechanisms of neurorespiratory control in amphibians are far from understood. One of the brainstem structures believed to play a key role in the ventilatory control of anuran amphibians is the nucleus isthmi (NI). This nucleus is a mesencephalic structure located between the roof of the midbrain and the cerebellum, which differentiates during metamorphosis; the period when pulmonary ventilation develops in bullfrogs. It has been recently suggested that the NI acts to inhibit hypoxic and hypercarbic drives in breathing by restricting increases in tidal volume. This data is similar to the influence of two pontine structures of mammals, the locus coeruleus and the nucleus raphe magnus. The putative mediators for this response are glutamate and nitric oxide. Microinjection of kynurenic acid (an ionotropic receptor antagonist of excitatory amino acids) and L-NAME (a non-selective NO synthase inhibitor) elicited increases in the ventilatory response to hypoxia and hypercarbia. This article reviews the available data on the role of the NI in the control of ventilation in amphibians. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The primary role of the respiratory system is to ensure adequate tissue oxygenation, eliminate carbon dioxide and help to regulate acid-base status. To maintain this homeostasis, amphibians possess an array of receptors located at peripheral and central chemoreceptive sites that sense respiration-related variables in both internal and external environments. As in mammals, input from these receptors is integrated at central rhythmogenic and pattern-forming elements in the medulla in a manner that meets the demands determined by the environment within the constraints of the behavior and breathing pattern of the animal. Also as in mammals, while outputs from areas in the midbrain may modulate respiration directly, they do not play a significant role in the production of the normal respiratory rhythm. However, despite these similarities, the breathing patterns of the two classes are different: mammals maintain homeostasis of arterial blood gases through rhythmic and continuous breathing, whereas amphibians display an intermittent pattern of aerial respiration. While the latter is also often rhythmic, it allows a degree of fluctuation in key respiratory variables that has led some to suggest that control is not as tight in these animals. In this review we will focus specifically on recent advances in studies of the control of ventilation in anuran amphibians. This is the group of amphibians that has attracted the most recent attention from respiratory physiologists. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
New Findings: • What is the central question of this study? The main purpose of the present manuscript was to investigate the cardiorespiratory responses to hypoxia or hypercapnia in conscious rats submitted to neuronal blockade of the parafacial region. We clearly showed that the integrity of parafacial region is important for the respiratory responses elicited by peripheral and central chemoreflex activation in freely behavior rats. • What is the main finding and its importance? Since the parafacial region is part of the respiratory rhythm generator, they are essential for postnatal survival, which is probably due to their contribution to chemoreception in conscious rats. The retrotrapezoid nucleus (RTN), located in the parafacial region, contains glutamatergic neurons that express the transcriptor factor Phox2b and that are suggested to be central respiratory chemoreceptors. Studies in anaesthetized animals or in vitro have suggested that RTN neurons are important in the control of breathing by influencing respiratory rate, inspiratory amplitude and active expiration. However, the contribution of these neurons to cardiorespiratory control in conscious rats is not clear. Male Holtzman rats (280-300 g, n= 6-8) with bilateral stainless-steel cannulae implanted into the RTN were used. In conscious rats, the microinjection of the ionotropic glutamatergic agonist NMDA (5 pmol in 50 nl) into the RTN increased respiratory frequency (by 42%), tidal volume (by 21%), ventilation (by 68%), peak expiratory flow (by 24%) and mean arterial pressure (MAP, increased by 16 ± 4, versus saline, 3 ± 2 mmHg). Bilateral inhibition of the RTN neurons with the GABAA agonist muscimol (100 pmol in 50 nl) reduced resting ventilation (52 ± 34, versus saline, 250 ± 56 ml min-1 kg-1 with absolute values) and attenuated the respiratory response to hypercapnia and hypoxia. Muscimol injected into the RTN slightly reduced resting MAP (decreased by 13 ± 7, versus saline, increased by 3 ± 2 mmHg), without changing the effects of hypercapnia or hypoxia on MAP and heart rate. The results suggest that RTN neurons activate facilitatory mechanisms important to the control of ventilation in resting, hypoxic or hypercapnic conditions in conscious rats. © 2012 The Authors. Experimental Physiology © 2012 The Physiological Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Catecholaminergic C1 cells of the rostral ventrolateral medulla (RVLM) are key determinants of the sympathoexcitatory response to peripheral chemoreceptor activation. Overactivation of this reflex is thought to contribute to increased sympathetic activity and hypertension; however, molecular mechanisms linking peripheral chemoreceptor drive to hypertension remain poorly understood. We have recently determined that activation of P2Y1 receptors in the RVLM mimicked effects of peripheral chemoreceptor activation. Therefore, we hypothesize that P2Y1 receptors regulate peripheral chemoreceptor drive in this region. Here, we determine whether P2Y1 receptors are expressed by C1 neurons in the RVLM and contribute to peripheral chemoreceptor control of breathing, sympathetic activity, and blood pressure. We found that injection of a specific P2Y1 receptor agonist (MRS2365) into the RVLM of anesthetized adult rats increased phrenic nerve activity (≈55%), sympathetic nerve activity (38±6%), and blood pressure (23±1 mm Hg), whereas application of a specific P2Y1 receptor antagonist (MRS2179) decreased peripheral chemoreceptor–mediated activation of phrenic nerve activity, sympathetic nerve activity, and blood pressure. To establish that P2Y1 receptors are expressed by C1 cells, we determine in the brain slice preparation using cell-attached recording techniques that cells responsive to MRS2365 are immunoreactive for tyrosine hydroxylase (a marker of C1 cells), and we determine in vivo that C1-lesioned animals do not respond to RVLM injection of MRS2365. These data identify P2Y1 receptors as key determinants of peripheral chemoreceptor regulation of breathing, sympathetic nerve activity, and blood pressure.
Resumo:
An implementable nonlinear control design approach is presented for a supersonic air-breathing ramjet engine. The primary objective is to ensure that the thrust generated by the engine tracks the commanded thrust without violating the operational constraints. An important constraint is to manage the shock wave location in the intake so that it neither gets detached nor gets too much inside the intake. Both the objectives are achieved by regulating the fuel flow to the combustion chamber and by varying the throat area of the nozzle simultaneously. The design approach accounts for the nonlinear cross-coupling effects and nullifies those. Also, an extended Kalman filter has been used to filter out the sensor and process noises as well as to make the states available for feedback. Furthermore, independent control design has been carried out for the actuators. To test the performance of the engine for a realistic flight trajectory, a representative trajectory is generated through a trajectory optimization process, which is augmented with a newly-developed finite-time state dependent Riccati equation technique for nullifying the perturbations online. Satisfactory overall performance has been obtained during both climb and cruise phases. (C) 2015 Elsevier Masson SAS. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h−1) and a constant f G (43.16 ± 1.74 breaths min−1). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h−1 and f G decreased to 39.12 ± 1.58 breaths min−1. During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h−1 and f G decreased to 34.97 ± 1.78 breaths min−1. These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Sympathetic and parasympathetic divisions of the autonomic nervous system constantly control the heart (sympathetic and parasympathetic divisions) and blood vessels (predominantly the sympathetic division) to maintain appropriate blood pressure and organ blood flow over sometimes widely varying conditions. This can be adversely affected by pathological conditions that can damage one or both branches of autonomic control. The set of teaching laboratory activities outlined here uses various interventions, namely, 1) the heart rate response to deep breathing, 2) the heart rate response to a Valsalva maneuver, 3) the heart rate response to standing, and 4) the blood pressure response to standing, that cause fairly predictable disturbances in cardiovascular parameters in normal circumstances, which serve to demonstrate the dynamic control of the cardiovascular system by autonomic nerves. These tests are also used clinically to help investigate potential damage to this control.