987 resultados para Continuous-wave


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface heat treatment in glasses and ceramics, using CO(2) lasers, has attracted the attention of several researchers around the world due to its impact in technological applications, such as lab-on-a-chip devices, diffraction gratings and microlenses. Microlens fabrication on a glass surface has been studied mainly due to its importance in optical devices (fiber coupling, CCD signal enhancement, etc). The goal of this work is to present a systematic study of the conditions for microlens fabrications, along with the viability of using microlens arrays, recorded on the glass surface, as bidimensional codes for product identification. This would allow the production of codes without any residues (like the fine powder generated by laser ablation) and resistance to an aggressive environment, such as sterilization processes. The microlens arrays were fabricated using a continuous wave CO(2) laser, focused on the surface of flat commercial soda-lime silicate glass substrates. The fabrication conditions were studied based on laser power, heating time and microlens profiles. A He-Ne laser was used as a light source in a qualitative experiment to test the viability of using the microlenses as bidimensional codes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The XSophe-Sophe-XeprView((R)) computer simulation software suite enables scientists to easily determine spin Hamiltonian parameters from isotropic, randomly oriented and single crystal continuous wave electron paramagnetic resonance (CW EPR) spectra from radicals and isolated paramagnetic metal ion centers or clusters found in metalloproteins, chemical systems and materials science. XSophe provides an X-windows graphical user interface to the Sophe programme and allows: creation of multiple input files, local and remote execution of Sophe, the display of sophelog (output from Sophe) and input parameters/files. Sophe is a sophisticated computer simulation software programme employing a number of innovative technologies including; the Sydney OPera HousE (SOPHE) partition and interpolation schemes, a field segmentation algorithm, the mosaic misorientation linewidth model, parallelization and spectral optimisation. In conjunction with the SOPHE partition scheme and the field segmentation algorithm, the SOPHE interpolation scheme and the mosaic misorientation linewidth model greatly increase the speed of simulations for most spin systems. Employing brute force matrix diagonalization in the simulation of an EPR spectrum from a high spin Cr(III) complex with the spin Hamiltonian parameters g(e) = 2.00, D = 0.10 cm(-1), E/D = 0.25, A(x) = 120.0, A(y) = 120.0, A(z) = 240.0 x 10(-4) cm(-1) requires a SOPHE grid size of N = 400 (to produce a good signal to noise ratio) and takes 229.47 s. In contrast the use of either the SOPHE interpolation scheme or the mosaic misorientation linewidth model requires a SOPHE grid size of only N = 18 and takes 44.08 and 0.79 s, respectively. Results from Sophe are transferred via the Common Object Request Broker Architecture (CORBA) to XSophe and subsequently to XeprView((R)) where the simulated CW EPR spectra (1D and 2D) can be compared to the experimental spectra. Energy level diagrams, transition roadmaps and transition surfaces aid the interpretation of complicated randomly oriented CW EPR spectra and can be viewed with a web browser and an OpenInventor scene graph viewer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the quantum theory of the far-off-resonance continuous-wave Raman laser using the Heisenberg-Langevin approach. We show that the simplified quantum Langevin equations for this system are mathematically identical to those of the nondegenerate optical parametric oscillator in the time domain with the following associations: pump pump, Stokes signal, and Raman coherence idler. We derive analytical results for both the steady-state behavior and the time-dependent noise spectra, using standard linearization procedures. In the semiclassical limit, these results match with previous purely semiclassical treatments, which yield excellent agreement with experimental observations. The analytical time-dependent results predict perfect photon statistics conversion from the pump to the Stokes and nonclassical behavior under certain operational conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nonlinear optics has emerged as a new area of physics , following the development of various types of lasers. A number of advancements , both theoretical and experimental . have been made in the past two decades . by scientists al1 over the world. However , onl y few scientists have attempted to study the experimental aspects of nonlinear optical phenomena i n I ndian laboratories. This thesis is the report of an attempt made in this direction. The thesis contains the details of the several investigations which the author has carried out in the past few years, on optical phase conjugation (OPC) and continuous wave CCVD second harmonic generation CSHG). OPC is a new branch of nonlinear optics, developed only in the past decade. The author has done a few experiments on low power OPC in dye molecules held in solid matrices, by making use of a degenerate four wave mixing CDFWND scheme. These samples have been characterised by studies on their absorption-spectra. fluorescence spectra. triplet lifetimes and saturation intensities. Phase conjugation efficiencies with r espect to the various parameters have been i nvesti gated . DFWM scheme was also employed i n achievi ng phase conjugation of a br oadband laser C Nd: G1ass 3 using a dye solution as the nonlinear medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the results of GaInNAs/GaAs quantum dot structures with GaAsN barrier layers grown by solid source molecular beam epitaxy. Extension of the emission wavelength of GaInNAs quantum dots by ~170nm was observed in samples with GaAsN barriers in place of GaAs. However, optimization of the GaAsN barrier layer thickness is necessary to avoid degradation in luminescence intensity and structural property of the GaInNAs dots. Lasers with GaInNAs quantum dots as active layer were fabricated and room-temperature continuous-wave lasing was observed for the first time. Lasing occurs via the ground state at ~1.2μm, with threshold current density of 2.1kA/cm[superscript 2] and maximum output power of 16mW. These results are significantly better than previously reported values for this quantum-dot system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have observed ultraviolet upconversion fluorescence from the 4D3/2 and 2P3/2 levels of Nd3+ in fluoroindate glass under infrared pumping. It was found that the excitation of a large population in the 4F3/2 metastable level allows to achieve strong upconversion emissions at 354 and 382 nm. A simple rate equation model reproduces the temporal behavior of the upconverted emission and allows us to estimate the energy transfer rate among three Nd3+ ions participating in the process. © 1997 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Nd:YLF/KGW Raman laser has been investigated in this work. We have demonstrated CW output powers at six different wavelengths, 1147 nm (0.70 W), 1163 nm (0.95 W), 549 nm (0.65 W), 552 nm (1.90 W), 573 nm (0.60 W) and 581 nm (1.10 W), with higher peak powers achieved under quasi-CW operation. Raman conversion of the 1053 nm fundamental emission is reported for the first time, enabling two new wavelengths in crystalline Raman lasers, 549 nm and 552 nm. The weak thermal lensing associated with Nd:YLF has enabled to achieve good beam quality, M-2 <= 2.0, and stable operation in relatively long cavities. (C) 2012 Optical Society of America

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Animal studies of excisional biopsies have shown less thermal damage when a carbon dioxide (CO(2)) laser (10.6 μm) is used in a char-free (CF) mode than in a continuous-wave (CW) mode. The authors' aim was to evaluate and compare clinical and histopathologic findings of excisional biopsies performed with CW and CF CO(2) laser (10.6 μm) modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This year marks the 20th anniversary of functional near-infrared spectroscopy and imaging (fNIRS/fNIRI). As the vast majority of commercial instruments developed until now are based on continuous wave technology, the aim of this publication is to review the current state of instrumentation and methodology of continuous wave fNIRI. For this purpose we provide an overview of the commercially available instruments and address instrumental aspects such as light sources, detectors and sensor arrangements. Methodological aspects, algorithms to calculate the concentrations of oxy- and deoxyhemoglobin and approaches for data analysis are also reviewed. From the single-location measurements of the early years, instrumentation has progressed to imaging initially in two dimensions (topography) and then three (tomography). The methods of analysis have also changed tremendously, from the simple modified Beer-Lambert law to sophisticated image reconstruction and data analysis methods used today. Due to these advances, fNIRI has become a modality that is widely used in neuroscience research and several manufacturers provide commercial instrumentation. It seems likely that fNIRI will become a clinical tool in the foreseeable future, which will enable diagnosis in single subjects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND In experimental animal studies, pulsing the CO2 laser beam has been shown to reduce the thermal damage zone of excised oral mucosal tissue. However, there is still controversy over whether this is borne out under clinical conditions. OBJECTIVE To compare the outcome following excisional biopsies of fibrous hyperplasias using a pulsed (cf) versus a continuous wave (cw) CO2 laser mode regarding the thermal damage zone, duration of surgeries, intra- and postoperative complications, postoperative pain sensation, scarring and/or relapse during the initial 6 months. MATERIALS AND METHODS One hundred Swiss-resident patients with a fibrous hyperplasia in their buccal mucosa were randomly assigned to the cw mode (5 W) or the cf mode (140 Hz, 400 microseconds, 33 mJ, 4.62 W) group. All excisions were performed by one single oral surgeon. Postoperative pain (2 weeks) was recorded by visual analogue scale (VAS; ranging from 0 to 100). Intake of analgesics and postoperative complications were recorded in a standardized study form. The maximum width of the collateral thermal damage zone was measured (µm) in excision specimens by one pathologist. Intraoral photographs at 6-month follow-up examinations were evaluated regarding scarring (yes/no). RESULTS Median duration of the excision was 65 seconds in the cw and 81 seconds in the cf group (P = 0.13). Intraoperative bleeding occurred in 16.3% of the patients in the cw and 17.7% of the cf group. The median value of the thermal damage zone was 161(±228) μm in the cw and 152(± 105) μm in the cf group (P = 0.68). The reported postoperative complications included swelling in 19% and minor bleeding in 6% without significant differences between the two laser modes. When comparing each day separately or the combined mean VAS scores of both groups between Days 1-3, 1-7, and 1-15, there were no significant differences. However, more patients of the cw group (25%) took analgesics than patients of the cf group (9.8%) resulting in a borderline significance (P = 0.04). Scarring at the excision site was found in 50.6% of 77 patients after 6 months, and more scars were identified in cases treated with the cf mode (P = 0.03). CONCLUSIONS Excision of fibrous hyperplasias performed with a CO2 laser demonstrated a good clinical outcome and long-term predictability with a low risk of recurrence regardless of the laser mode (cf or cw) used. Scarring after 6 months was only seen in 50.6% of the cases and was slightly more frequent in the cf mode group. Based on the findings of the present study, a safety border of 1 mm appears sufficient for both laser modes especially when performing a biopsy of a suspicious soft tissue lesion to ensure a proper histopathological examination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a derivation and, based on it, an extension of a model originally proposed by V.G. Niziev to describe continuous wave laser cutting of metals. Starting from a local energy balance and by incorporating heat removal through heat conduction to the bulk material, we find a differential equation for the cutting profile. This equation is solved numerically and yields, besides the cutting profiles, the maximum cutting speed, the absorptivity profiles, and other relevant quantities. Our main goal is to demonstrate the model’s capability to explain some of the experimentally observed differences between laser cutting at around 1 and 10 μm wavelengths. To compare our numerical results to experimental observations, we perform simulations for exactly the same material and laser beam parameters as those used in a recent comparative experimental study. Generally, we find good agreement between theoretical and experimental results and show that the main differences between laser cutting with 1- and 10-μm beams arise from the different absorptivity profiles and absorbed intensities. Especially the latter suggests that the energy transfer, and thus the laser cutting process, is more efficient in the case of laser cutting with 1-μm beams.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We discuss two different approaches to overcome the power limitations of CW THz generation imposed to conventional photomixers. The increase in power achievable by using arrays of AEs is studied. Then ?large area emitters? are proposed as an alternate approach to overcome the power limitations. In this antenna-free new scheme of photomixing, the THz radiation originates directly from the acceleration of photo-induced charge carriers generated within a large semiconductor area. The quasi-continuous distribution of emitting elements corresponds to a high-density array and results in particularly favorable radiation profiles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reported are observations and measurements of the inscription of fibre Bragg gratings in two different types of microstructured polymer optical fibre: few-moded and endlessly single mode. Contrary to FBG inscription in silica microstructured fibre, where high energy laser pulses are a prerequisite, we have successfully used a low power CW laser source operating at 325nm to produce 1-cm long gratings with a reflection peak at 1570 nm. Peak reflectivities of more than 10% have been observed.