877 resultados para Continuous cropping obstacle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

牡丹(Paeonia suffruticosa Andr.)是芍药科芍药属牡丹组植物,花大、色艳、型美、香郁、药用范围广、文化内涵丰富,被尊为“国色天香”、“花中之王”。我国植牡丹、赏牡丹有1600多年的历史,培育了许多价值高的品种,遗憾的是个别黄色、鲜红色、绿色等珍贵品种不断消失,而且现有的一些文化价值与观赏价值极高的古牡丹、著名的牡丹园的老牡丹均出现了衰弱现象,有的已奄奄一息。为了探索传统牡丹品种消失及牡丹衰老的原因,本研究在充分调查、整理国内品种资源的基础上,总结了牡丹品种的传承和消失情况,掌握了古牡丹的资源状况。通过连作土壤栽培试验证明了牡丹连作障碍的存在,并选定了生长在同一区域的5、10、15、20、25、30年生6个株龄的‘洛阳红(Luo Yang Hong)’为研究对象,从形态指标的调查、生理指标的测定、根际土壤及根系浸提液的化感成分分析三个方面着手,确定了牡丹开始衰老的时期;揭示了牡丹衰老机理;总结了古牡丹保留、复壮、养护办法;为牡丹专类园的管理及可持续性发展提供了理论和技术指导。本研究主要结果如下: 1、牡丹品种和古牡丹资源 通过对中国牡丹品种资源的文献查阅和实地考察,系统整理了我国不同时代的品种状况,调查结果表明:宋、元、明、清共有品种1109种,目前仅存143种,品种资源消失十分严重。收集整理了49处古牡丹资料,并据此绘制了我国目前古牡丹分布图;实地调查了17处24株古牡丹,详细介绍了部分品种的来历传说、生长状况和衰亡原因。5个优良传统品种在中国科学院植物研究所牡丹种质资源圃内得以保存,其中潞城古牡丹,植株最大(高2.3 m,冠径5.6 m),且生长旺盛;西溪牡丹属丰花品种,40年植株可开花811朵。 2、牡丹连作障碍 利用牡丹连作根际土壤及其浸出液栽培牡丹,结果表明,播种苗及分株苗的生长均受到了抑制;连作年限越久的处理抑制作用越强;根际土壤浸出液对牡丹生长的影响较大,对前期地下部和后期地上部都有很强的抑制作用,而且还抑制了上胚轴休眠的解除;根际土壤对后期株高和展叶幅的影响较大,对播种苗前期生根影响不大。牡丹存在连作障碍现象,连作障碍是牡丹衰弱的重要原因。 3、牡丹衰老时间及机理 通过对6 个株龄‘洛阳红’的形态、生理指标及根际土壤化感成分的比较得出,牡丹在同一地方大约栽植15 年后开始衰弱,20 年以内应该采取复壮措施。利用气相色谱—质谱联用技术(Gas Chromatograph-Mass Spectrometer, GC-MS)检测到根际土壤及根系浸提液中主要存在:烷烃、烯烃、芳香烃、醇、醚、酚醌、有机酸、醛、酮、酯、苯、胺等12 类有机物。对比分析得出有12 种物质可能是根系分泌物,根际土壤中可能具毒害作用的物质有40 种,栽植牡丹使土壤中增加的物质有24 种。 4、古牡丹复壮技术及应用 栽培基质中添加活性炭、沙子、麦饭石等均能有效的促进牡丹的生长,以活性炭的效果最好。对“汉牡丹”实施了综合复壮措施,效果明显。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultivation and cropping of soils results in a decline in soil organic carbon and soil nitrogen, and can lead to reduced crop yields. The CENTURY model was used to simulate the effects of continuous cultivation and cereal cropping on total soil organic matter (C and N), carbon pools, nitrogen mineralisation, and crop yield from 6 locations in southern Queensland. The model was calibrated for each replicate from the original datasets, allowing comparisons for each replicate rather than site averages. The CENTURY model was able to satisfactorily predict the impact of long-term cultivation and cereal cropping on total organic carbon, but was less successful in simulating the different fractions and nitrogen mineralisation. The model firstly over-predicted the initial (pre-cropping) soil carbon and nitrogen concentration of the sites. To account for the unique shrinking and swelling characteristics of the Vertosol soils, the default annual decomposition rates of the slow and passive carbon pools were doubled, and then the model accurately predicted initial conditions. The ability of the model to predict carbon pool fractions varied, demonstrating the difficulty inherent in predicting the size of these conceptual pools. The strength of the model lies in the ability to closely predict the starting soil organic matter conditions, and the ability to predict the impact of clearing, cultivation, fertiliser application, and continuous cropping on total soil carbon and nitrogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Vitamin A deficiency (VAD) is a serious problem in developing countries, affecting approximately 127 million children of preschool age and 7.2 million pregnant women each year. However, this deficiency is readily treated and prevented through adequate nutrition. This can potentially be achieved through genetically engineered biofortification of staple food crops to enhance provitamin A (pVA) carotenoid content. Bananas are the fourth most important food crop with an annual production of 100 million tonnes and are widely consumed in areas affected by VAD. However, the fruit pVA content of most widely consumed banana cultivars is low (~ 0.2 to 0.5 ìg/g dry weight). This includes cultivars such as the East African highland banana (EAHB), the staple crop in countries such as Uganda, where annual banana consumption is approximately 250 kg per person. This fact, in addition to the agronomic properties of staple banana cultivars such as vegetative reproduction and continuous cropping, make bananas an ideal target for pVA enhancement through genetic engineering. Interestingly, there are banana varieties known with high fruit pVA content (up to 27.8 ìg/g dry weight), although they are not widely consumed due to factors such as cultural preference and availability. The genes involved in carotenoid accumulation during banana fruit ripening have not been well studied and an understanding of the molecular basis for the differential capacity of bananas to accumulate carotenoids may impact on the effective production of genetically engineered high pVA bananas. The production of phytoene by the enzyme phytoene synthase (PSY) has been shown to be an important rate limiting determinant of pVA accumulation in crop systems such as maize and rice. Manipulation of this gene in rice has been used successfully to produce Golden Rice, which exhibits higher seed endosperm pVA levels than wild type plants. Therefore, it was hypothesised that differences between high and low pVA accumulating bananas could be due either to differences in PSY enzyme activity or factors regulating the expression of the psy gene. Therefore, the aim of this thesis was to investigate the role of PSY in accumulation of pVA in banana fruit of representative high (Asupina) and low (Cavendish) pVA banana cultivars by comparing the nucleic acid and encoded amino acid sequences of the banana psy genes, in vivo enzyme activity of PSY in rice callus and expression of PSY through analysis of promoter activity and mRNA levels. Initially, partial sequences of the psy coding region from five banana cultivars were obtained using reverse transcriptase (RT)-PCR with degenerate primers designed to conserved amino acids in the coding region of available psy sequences from other plants. Based on phylogenetic analysis and comparison to maize psy sequences, it was found that in banana, psy occurs as a gene family of at least three members (psy1, psy2a and psy2b). Subsequent analysis of the complete coding regions of these genes from Asupina and Cavendish suggested that they were all capable of producing functional proteins due to high conservation in the catalytic domain. However, inability to obtain the complete mRNA sequences of Cavendish psy2a, and isolation of two non-functional Cavendish psy2a coding region variants, suggested that psy2a expression may be impaired in Cavendish. Sequence analysis indicated that these Cavendish psy2a coding region variants may have resulted from alternate splicing. Evidence of alternate splicing was also observed in one Asupina psy1 coding region variant, which was predicted to produce a functional PSY1 isoform. The complete mRNA sequence of the psy2b coding regions could not be isolated from either cultivar. Interestingly, psy1 was cloned predominantly from leaf while psy2 was obtained preferentially from fruit, suggesting some level of tissue-specific expression. The Asupina and Cavendish psy1 and psy2a coding regions were subsequently expressed in rice callus and the activity of the enzymes compared in vivo through visual observation and quantitative measurement of carotenoid accumulation. The maize B73 psy1 coding region was included as a positive control. After several weeks on selection, regenerating calli showed a range of colours from white to dark orange representing various levels of carotenoid accumulation. These results confirmed that the banana psy coding regions were all capable of producing functional enzymes. No statistically significant differences in levels of activity were observed between banana PSYs, suggesting that differences in PSY activity were not responsible for differences in the fruit pVA content of Asupina and Cavendish. The psy1 and psy2a promoter sequences were isolated from Asupina and Cavendish gDNA using a PCR-based genome walking strategy. Interestingly, three Cavendish psy2a promoter clones of different sizes, representing possible allelic variants, were identified while only single promoter sequences were obtained for the other Asupina and Cavendish psy genes. Bioinformatic analysis of these sequences identified motifs that were previously characterised in the Arabidopsis psy promoter. Notably, an ATCTA motif associated with basal expression in Arabidopsis was identified in all promoters with the exception of two of the Cavendish psy2a promoter clones (Cpsy2apr2 and Cpsy2apr3). G1 and G2 motifs, linked to light-regulated responses in Arabidopsis, appeared to be differentially distributed between psy1 and psy2a promoters. In the untranscribed regulatory regions, the G1 motifs were found only in psy1 promoters, while the G2 motifs were found only in psy2a. Interestingly, both ATCTA and G2 motifs were identified in the 5’ UTRs of Asupina and Cavendish psy1. Consistent with other monocot promoters, introns were present in the Asupina and Cavendish psy1 5’ UTRs, while none were observed in the psy2a 5’ UTRs. Promoters were cloned into expression constructs, driving the â-glucuronidase (GUS) reporter gene. Transient expression of the Asupina and Cavendish psy1 and psy2a promoters in both Cavendish embryogenic cells and Cavendish fruit demonstrated that all promoters were active, except Cpsy2apr2 and Cpsy2apr3. The functional Cavendish psy2a promoter (Cpsy2apr1) appeared to have activity similar to the Asupina psy2a promoter. The activities of the Asupina and Cavendish psy1 promoters were similar to each other, and comparable to those of the functional psy2a promoters. Semi-quantitative PCR analysis of Asupina and Cavendish psy1 and psy2a transcripts showed that psy2a levels were high in green fruit and decreased during ripening, reinforcing the hypothesis that fruit pVA levels were largely dependent on levels of psy2a expression. Additionally, semi-quantitative PCR using intron-spanning primers indicated that high levels of unprocessed psy2a and psy2b mRNA were present in the ripe fruit of Cavendish but not in Asupina. This raised the possibility that differences in intron processing may influence pVA accumulation in Asupina and Cavendish. In this study the role of PSY in banana pVA accumulation was analysed at a number of different levels. Both mRNA accumulation and promoter activity of psy genes studied were very similar between Asupina and Cavendish. However, in several experiments there was evidence of cryptic or alternate splicing that differed in Cavendish compared to Asupina, although these differences were not conclusively linked to the differences in fruit pVA accumulation between Asupina and Cavendish. Therefore, other carotenoid biosynthetic genes or regulatory mechanisms may be involved in determining pVA levels in these cultivars. This study has contributed to an increased understanding of the role of PSY in the production of pVA carotenoids in banana fruit, corroborating the importance of this enzyme in regulating carotenoid production. Ultimately, this work may serve to inform future research into pVA accumulation in important crop varieties such as the EAHB and the discovery of avenues to improve such crops through genetic modification.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

在长期定位试验的基础上,通过田间实地测定0~400 cm土壤含水量,分析和比较了不同种植方式下苜蓿草地土壤水分的变化。结果表明,连作苜蓿地、轮作苜蓿地的400 cm土层平均土壤含水量分别为10.6%和11.4%,均低于土壤稳定湿度,其干燥化指数为24.6%和37.2%,分别属强烈干燥化和严重干燥化,而小麦连作的干燥化指数为86.4%,属轻度干燥化。连作苜蓿地土壤干层最厚,400 cm处仍十分干燥,而轮作苜蓿地和连作小麦地到240 cm以下时,土壤水分开始有所恢复。连作苜蓿地和轮作苜蓿地通过降雨可恢复部分土壤水分,可恢复的土壤深度为40 cm和60 cm,而连作小麦地可达100 cm。不同施肥措施下连作苜蓿地土壤干燥化程度都很严重,施肥措施不是造成土壤干燥化的主要原因。轮作系统中不同轮作年限苜蓿地的土壤水分状况有一定的差异,但是均没有形成深厚的土壤干层。与连作苜蓿相比,轮作苜蓿不会大量消耗土壤深层水分而形成深厚的土壤干层,有利于土壤水分的可持续利用。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

近年来,随着对作物重茬障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。花椒(Zanthoxy piperitum.)为芸香科植物,是一种收益早、用途广、价值高的经济树种,是川西干旱河谷地区的重要经济作物,其连作障碍也倍受关注,系统研究花椒化感作用将有助于理解和最终解决花椒连作障碍问题。本文首先通过萃取、层析等方法分离花椒主效化感成分;通过外加不同浓度的花椒叶水浸液研究了对土壤氮素养分循环的影响;研究了花椒叶水浸液对苜蓿生理生化、光合作用、氮素养分吸收的影响,并对外施氮肥对这种化感影响的缓解作用做了研究;研究了花椒化感潜力对全球变化——UV-B增强辐射的响应。主要研究结果如下: 1.用不同极性的有机溶剂对花椒叶水浸液浓缩浸膏萃取、柱层析,结合生物活性检测,分离得到主效化感作用组分的一种化感物质——对甲氧基苯酚。采用该物质纯品进行生物活性检测,证明其具有化感作用。 2.花椒叶水浸液处理土壤30天后,土壤硝态氮、铵态氮、无机氮(硝态氮+铵态氮)与对照相比,随着花椒叶水浸液浓度的增加呈现降低的趋势,其中土壤铵态氮含量显著降低,而硝态氮含量的变化则不显著,无机氮含量也显著降低。土壤脲酶和蛋白酶的活性与无机氮含量的变化趋势相同。随着花椒叶水浸液浓度的增加,氨化细菌数量显著降低,固氮菌的数量变化不显著,硝化细菌和反硝化细菌数量有减少的趋势。60天后,硝态氮含量、铵态氮含量、无机氮随水浸液浓度增加的变化趋势与30天时相似;随着花椒叶水浸液浓度的增加,氨化细菌、固氮菌的数量显著减少,硝化细菌数量、反硝化细菌数量仍呈减少趋势;土壤脲酶、蛋白酶活性与第30天的变化趋势相同。第60天与第30天的结果相比,相同水浸液浓度处理的硝态氮、铵态氮、无机氮均有下降的趋势,但除了25g.L-1水浸液处理的外,其它相同浓度的处理间差异均不显著;除了12.5 g.L的处理外土壤脲酶活性均呈增强的趋势;蛋白酶活性都有不同程度的增加;花椒叶水浸液处理的土壤硝化细菌和反硝化细菌数量呈增加趋势。 3.随着花椒叶水浸液浓度的增加,显著抑制了苜蓿根长、地上地下生物量、叶绿素含量、叶片中可溶性蛋白的含量,净光合速率。苜蓿体内四种抗氧化酶(POD、SOD、CAT、APX) 活性随着水浸液浓度的增加而降低,而丙二醛含量则增加。苜蓿氮初级同化相关酶硝酸还原酶(NR)、谷氨酰合成酶(GS)、谷氨酸脱氢酶(GDH)的活性随着水浸液浓度的增加受到不同程度的影响。总的来说,苜蓿硝酸还原酶、谷氨酰合成酶的活性受到抑制,而谷氨酸脱氢酶活性的变化则比较复杂,根呈先降低后增加的趋势,叶片则无显著变化。外施两种不同浓度的硝酸铵氮肥后,对12.5、25 g.L-1花椒叶水浸液处理的苜蓿化感作用有显著的缓解作用,表现在株高、生物量、光合作用等方面,大多达到与对照(0 g.L-1)未施氮肥无显著差异的水平,而对50 g.L-1水浸液处理的苜蓿幼苗,虽有一定的缓解作用,但这种作用均未达到与对照(0 g.L-1)未施氮肥时无显著差异的水平。 4. UV-B增强辐射处理花椒后,花椒的化感潜力显著增强。花椒叶片内UV-B吸收物质的含量和总酚含量均显著增加。 In recent years, with profound research on the reasons of continuous cropping obstacles, allelopathy received increasing attention to many scholars at home and abroad. Zanthoxy bungeanum as a Rutaceae plant is a high economic value species which gains early and uses widely. Zanthoxylum is an important economic crop in the arid valley of western Sichuan region, and its not even has received much concern for the continuous cropping obstacles. The systematic study of allelopathy of Zanthoxylum will contribute to the understanding and final settlement of this issue. The major allelopathic composition was separated through the extraction, chromatography combined with other methods. The impact on soil nutrient cycling was also studied through the addition of different concentrations of water extracts of Zanthoxylum. Furthermore, the effects of water extracts of Zanthoxylum leaves on alfalfa leaf physiological and biochemical indexes, photosynthesis, soil enzymes and nutrient uptake of nitrogen and the mitigation of allelopathy through using external fertilizer were studied to put forward scientific resolvent for Zanthoxylum continuous cropping obstacles .The response of allelopathic potential of Zanthoxylum to global change - UV-B enhanced radiation was studied . The main findings are as follows: 1. Through extraction with different polar organic solvents on concentrated water extract of Zanthoxylum leaf and then using column chromatography combined with detection of biological activity, one of the main allelopathic components- methoxy-phenol was isolated. The biological activity testing of the pure material of methoxy-phenol proved that it does have allelopathic potential. 2. Thirty days after treating soil with water extract of Zanthoxylum leaf, as compared with the control, the contents of soil nitrate, ammonium, nitrate plus ammonium nitrogen showed a trend of decrease with the increase of the concentration of water extract whereas the content of ammonium nitrogen showed a significant reduction, and the content of nitrate did not change significantly, the content of nitrate plus ammonium nitrogen also showed a significant (P <0.05) redction. The activity of soil urease and protease showed the same trend as the content of nitrate nitrogen plus ammonium nitrogen. With the increase in the concentration of water extract, the number of ammonification bacteria significantly reduced but nitrogen-fixing bacteria did not change significantly and there was a decreasing trend in the number of nitrifying bacteria and denitrifying bacteria. Sixty days after the treatment, with the increase in solution concentration of water extract of Zanthoxylum leaf, the content of nitrate、 ammonium nitrogen, nitrate plus ammonium nitrogen showed a similar change trend to 30 days’; the number of ammonification bacteria, nitrogen-fixing bacteria significantly reduced ; the number of nitrifying bacteria, denitrifying bacteria was still an downward trend; the activity of soil urease and protease showed the same trend as the 30th days’. Compared to the results of the 30th days’, the content of nitrate, ammonium, nitrate plus ammonium nitrogen showed a decrease trend between the treatment of same concentration, but there was no significant difference except the treatment of 25g.L-1 between the same concentration; the activity of soil urease showed enhanced trend except the treatment of 12.5 g.L-1; the activity of protease increased to varying degrees; the number of ammonification bacteria、 nitrifying bacteria and denitrifying bacteria were growing while nitrogen-fixing bacteria reduced.. 3. With the increase of the concentration of water extract of Zanthoxylum leaf, the water extract significantly inhibited the root length, aboveground biomass, content of chlorophyll and soluble protein in leaf and net photosynthetic rate. The activity of four antioxidant enzymes (POD, SOD, CAT, APX) reduced with the increase in concentration of the water extract but the content of MDA increased. The activity of enzymes related to primary nitrogen assimilation such nitrate reductase (NR), glutamyl synthetase (GS), glutamate dehydrogenase (GDH) were subject to different degrees with an increase in the concentration of water extracts. In general, the activity of nitrate reductase, glutamyl synthetase were inhibited, while change in the activity of glutamate dehydrogenase was more complex. The activity of glutamate dehydrogenase in leaf was first reduced and then increase,but did not change significantly in root. After using two external different concentrations of nitrogen fertilizer, there was a significant mitigation in inhibiton in plant height, biomass, photosynthesis, etc. in the treatment of 12.5,25 gL-1 of water extract of Zanthoxylum leaf, and most of these indexes showed no significant difference with the control (0 g.L-1, no external fertilizer was added) .Although there showed a certain degree of ease in the treatment of 50 g.L-1 , there was still a significant difference compared with the control (0 gL-1) in which no external fertilizer was used. 4.The allelopathic potential of Zanthoxylum positively responded to enhanced UV-B significantly. The content of UV-B absorbing compounds and the total phenol also significant increased.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

花椒(Zanthoxylum bungeanum)是川西干旱河谷地区重要的经济作物,化感作用是花椒连作障碍的重要原因之一。花椒凋落物分解是影响花椒林地土壤肥力及花椒产量的重要因素,因此系统研究花椒化感作用是否对花椒凋落物的分解产生影响可以为解决花椒连作障碍导致的产量下降等问题提供科学的理论依据。本文通过室内模拟实验研究了花椒凋落物的四个分解动态以及分解后凋落物浸提液对花椒林地土壤性质的影响;通过野外盆栽实验研究了花椒凋落物浸提液对花椒幼苗的生长、花椒凋落物的质量及土壤性质的影响。最终从生理生化角度揭示了花椒的化感作用对凋落物分解的影响机理,为深入解决花椒连作障碍问题、对花椒凋落物采取有效的人工措施提供了科学的理论依据。主要的研究结果如下: 1. 室内分解实验证明,花椒凋落物在分解的60 d 内分解速率呈现由大到小的变化趋势,并且凋落物分解呈现明显的毒性动态。凋落物在分解的10 d、30 d 时,分解速率较大,30 d 以后分解速率显著降低。凋落物分解的10 d 左右酚酸释放量最大,此时凋落物的毒性最大,凋落物分解到10 d 以后,酚酸释放量逐渐减少,凋落物的毒性也逐渐减小。 2. 四个分解动态的花椒凋落物浸提液对土壤化学性质产生了显著的影响。花椒凋落物在分解的60 d 内,其浸提液使土壤pH值均显著的增加。分解0 d 的凋落物浸提液显著的降低了土壤铵态氮的含量,抑制了纤维素分解菌的生长;分解60 d 的凋落物浸提液显著的降低了土壤酚酸含量,增加了土壤有效磷的含量;分解30 d 和60 d 的凋落物浸提液均显著的促进了好气性纤维素分解菌的生长。这说明花椒凋落物在分解过程中呈现出明显的毒性动态:凋落物分解的初期毒性作用较大,随着分解的继续进行特别是在分解的30 d 以后,其毒性作用慢慢降低。 3. 花椒凋落物浸提液对花椒幼苗表现出明显的化感作用。不同浓度的浸提液对花椒幼苗地上及地下生物量、叶面积均产生了显著的抑制作用,并且随着浸提液浓度的升高抑制作用加强。凋落物浸提液对叶片厚度的影响较小,只有Y1对叶片厚度的生长抑制作用显著。 4. 花椒的化感作用改变了凋落物的质量,并对凋落物分解产生了显著的影响。对花椒幼苗用不同浓度的凋落物浸提液进行处理,Y1使凋落物有机碳含量、木质素含量、C/N、木质素/氮显著降低,纤维素含量显著升高;Y3使凋落物有机碳含量、木质素含量、C/N、木质素/氮显著升高。花椒凋落物质量的改变显著的影响了凋落物的分解,凋落物的分解速率大小依次为:Y1(10.15 a-1)> Y2(8.71 a-1)> CK(6.41 a-1)> Y3(5.08 a-1)。 5. 花椒的化感作用改变了土壤性质,并对凋落物分解产生了显著的影响。对花椒幼苗用不同浓度的凋落物浸提液处理的同时,也改变了土壤性质。不同浓度的凋落物浸提液显著的升高了土壤pH值、有机碳含量。各种浓度的凋落物浸提液对土壤多酚氧化酶的活性均起到了显著的促进作用。凋落物浸提液Y1对土壤纤维素分解酶的活性、细菌和真菌的生长也具有显著的促进作用。土壤性质的改变显著的影响了凋落物的分解,凋落物的分解速率大小依次为:Y1(10.30 a-1)>Y2(9.60 a-1)>CK(6.41 a-1)>Y3(6.29 a-1)。 6. 不论是凋落物质量发生改变还是土壤性质发生改变,在凋落物分解的整个过程中,C元素始终处于单调净释放的状态,并且C释放量与分解速率成显著的正相关,即凋落物分解越快,凋落物C释放量越大。凋落物分解过程中,均出现了酚酸大量释放的情况,并与凋落物分解速率成显著正相关。凋落物分解后的木质素含量、木质素/氮均增加,并且随着浸提液浓度的升高,凋落物木质素含量、木质素/氮升高。 Zanthoxylum bungeanum is an important economic crop in dry valley of the Minjiang river (Sichuan, Southwest China), but allelopathy is one of the important reasons for its continuous cropping. Zanthoxylum bungeanum litter decomposition affects Zanthoxylum bungeanum soil fertility and its output. So systemically investigate if allelopathy affects litter decomposition could provide the scientific methods to solve the problem of output fall caused by the continuous cropping. In this paper, the releasing dynamics of phenolic acid during Zanthoxylum bungeanum litter decomposition (0, 10, 30 and 60 days) and the effects of its aqueous extract on soil chemical properties were investigated via the laboratory study. Effects of Zanthoxylum bungeanum litter aqueous extract on the growth of young Zanthoxylum bungeanum seedlings, litter qualities and the soil qualities were investigated via the field study. Finally, we open out the action manner of Zanthoxylum bungeanum allelopathic effect on the litter decomposition, and provide the theoretical basis to solve the Zanthoxylum bungeanum continuous cropping. The main results showed that: 1. The laboratory litter decomposition experiment showed a trend of decomposition rate from large to small and an occurrence of phytotoxicity with clear dynamic patterns during Zanthoxylum bungeanum litter decomposition. The litter decomposition rate was larger at the tenth and 30th day during 60-day litter decomposition and gradually decreased after 30 days of litter decompostion. The releasing quantity of the litter phenolic acid was the highest at the tenth day, and here, the litter toxicity was the biggest. The releasing quantity of the litter phenolic acid gradually decreased after 10 days of litter decomposition, so the phytotoxicity of litter was gradually decreased with the litter decomposition. 2. The Zanthoxylum bungeanum litter aqueous extract after four decomposition stages had significantly effect on the soil chemical qualities. The pH value in soil was significantly increased in litter aqueous extract of four decomposition stages. The NH+4-N concentration was significantly decreased in soil amended with litter aqueous extract of 10-day decomposition which inhibited the growth of Aerobic cellulose-decomposer. The growth of soil Aerobic cellulose-decomposer was promoted by the litter aqueous extract of 30-day decomposition. Available phosphorus concentration was significantly increased and phenolic acid content was significantly decreased in soil amended with litter aqueous extract of 60-day decomposition which promoted the growth of Aerobic cellulose-decomposer. The study results showed an occurrence of phytotoxicity with clear dynamic patterns during Zanthoxylum bungeanum litter decomposition. The phytotoxicity of litter was the largest at the initial stage, but the phytotoxicity gradually decreased with the litter decomposition, especially after 30 days of decomposition. 3. The field study indicated that the Zanthoxylum bungeanum litter aqueous extract had significant allelopathic effects on the growth of young seedlings.Different concentration aqueous extract had signinficant inhibiting effects on biomass and leaf area of young seedlings. The inhibiting effect on the biomass strengthened with the litter aqueous extract concentration augment. Litter aqueous extracts had less effect on the leaf thickness, and only Y1 had significant inhibiting effect on the leaf thickness. 4. The Zanthoxylum bungeanum allelopathy had significant effect on the litter qualities and the litter decomposition. Treating the young Zanthoxylum bungeanum seedlings with different concentration of litter aqueous extracts, the leaf litter organic C, lignin, C/N and lignin/N all decreased and the cellulose content increased under Y1 treatment. The leaf litter organic C, lignin, C/N and lignin/N all increased under Y3 treatment. So the litter decomposition was significant affectded by the litter qualities, and the litter decomposition rate was Y1(10.15 a-1)> Y2(8.71 a-1) > CK(6.41 a-1) > Y3(5.08 a-1). 5. The Zanthoxylum bungeanum allelopathy had significant effect on the soil qualities and the litter decomposition. Treating the young Zanthoxylum bungeanum seedlings with different concentration of litter aqueous extracts, also changed the soil qualities. Different concentration of litter aqueous extracts had significant effects on the soil pH and organic C content. Every concentration of litter aqueous extracts accelerated the soil Polyphenol Oxidase activity and Y1 accelerated the soil Cellulase activity, the number of soil bacteria and fungi. So the litter decomposition was significant affected by the soil qualities, and the litter decomposition rate was Y1(10.30 a-1) > Y2 (9.60 a-1) >CK(6.41 a-1)>Y3(6.29 a-1)。 6. Whether the litter or soil qualities changed, the litter C element at the state of release at all times during the litter decomposition, and the release quantity increased with the decomposition rate augment. Litter released plentiful total penolics content during decomposition, and the release quantity had the positive correlation with the litter decomposition rate. The litter lignin content and the lignin/N all increased with the litter aqueous extracts concentration augment after litter decomposition.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

花椒(Zanthoxylum piperitum)是川西干旱河谷地区的重要经济作物,化感作用是花椒连作障碍的原因之一。系统研究花椒化感作用有助于深入理解并最终解决花椒连作障碍。本文通过研究花椒叶、林下土壤浸提液及单一纯化感物质对花椒幼苗生长、苜蓿种子萌发及幼苗生长的影响作用,从生理生化角度揭示浸提液及纯化感物质的作用方式。通过室外和室内模拟实验,对浸提液及纯化感物质的化感效应进行比较,为花椒连作障碍的解决和化感作用机制的深入理解提供依据。主要结果如下: 1.花椒叶及林下土壤浸提液对地下生物量影响作用强与对地上生物量的化感效应,两种浸提液的化感效应强度不同,叶浸提液作用表现更显著。其中在Y6、Y8 、T6和T8处理时,花椒幼苗地下生物量分别降低了31.2%、32.1%、31.6%和31.7%。 2.两种浸提液均能显著影响花椒幼苗体内的保护性酶活性,总体说来,在高浓度下抑制各种抗氧化物酶活性,幼苗体内丙二醛含量增加,幼苗受害严重;在较低浓度下,各种保护性酶活性有所增加,丙二醛含量减少,幼苗伤害减轻。同时,不同月份里,各种酶的活性高低显著不同,9月份的活性显著低于7月份的酶活性。对于养分含量的影响,Y8、T8的影响强度最大,分别使碳元素含量降低了27.8%和30.8%,使钾元素含量降低了34.7%和25.6%。 3.花椒叶及林下土壤浸提液对苜蓿种子萌发及幼苗生长有化感作用,表现在最终萌发率、不同物质代谢及保护性酶活性的差异上。两种浸提液对苜蓿种子萌发过程中蛋白质的含量均无显著性影响,对淀粉和可溶性糖的影响作用类似,高浓度处理无明显化感效应,较低浓度处理显著降低二者在萌发苜蓿种子中的含量。Y2、Y4与T4处理分别使可溶性糖含量减少了32.3%、29.1%和18.8%,Y2与T2处理分别使淀粉含量降低了29.3%和26.8%。 4.苜蓿种子在4种单一化感物质最高浓度即10-3 mol•L-1处理下,萌发率显著降低,半数萌发时间推迟,随着处理浓度降低,抑制作用逐渐减弱,当降低到10-6 mol•L-1时,又能够表现出对苜蓿种子萌发的促进作用。 5.纯化感物质在10-6 mol•L-1时使苜蓿幼苗叶片的保护性酶活性显著升高,丙二醛含量显著降低;在10-3 mol•L-1时使苜蓿叶片中保护性酶活性显著降低,丙二醛含量增加,膜脂过氧化程度加重。 Zanthoxylum piperitum is one of the most important cash crops and has been extensively cultivated in Eastern Tibetan Plateau, especially in the fragile dry valley areas. Allelopathic effects could be a reason for Z. piperitum’s continuous cropping impediment. Systemmatically research of the effect of Z. piperitum allelopathy could help to comprehend the continuous cropping impediment. The allelopathic effects on seedlings growth and seed germination of aqueous extracts of Zanthoxylum piperitum and phenolic allelochemicals were studied, and the action mechanism of the two substances was also discussed from physiology. Indoor and outdoor experiments were set to compare the difference between aqueous extracts and pure allelochemicals. The main results showed that: 1. The aqueous extracts of leaf and soil had significant allelopathic effects on aboveground and underground biomass, but the effect on underground biomass was stronger than the effect on underground evidently. Treated with Y6、Y8 、T6 and T8, the underground biomass was reduced 31.2%、32.1%、31.6% and 31.7% respectively. 2. The activity of activities of superoxide dismutase, catalase, peroxidase and ascorbate peroxidase were significantly reduced, while the content of MDA was increased and the seedlings were suffered stronger, when treated by the high concentration; but at the low concentration, these were reversed. And then, at the different month, the activities of antioxidant enzyme were significantly distinct. As for the contents of nutrient element, Y8、T8 had the more intensive effects than other treatments. 3. The results showed that the two types of aqueous extracts had significant allelopathic effects on seed germination, substances metabolize and the activity of antioxidant enzyme. But the aqueous extracts had no effects on the content of protein, while had the similar effects on the content of starch and soluble sugar. At Y2、Y4 and T4, the content of soluble sugar decreased 32.3%、29.1% and 18.8% respectively. 4. Treated with 10-3 mol•L-1 of the four allelochemicals, the seed germination of alfalfa was significantly inhibited. Ferulic acid, coumarin and vanillic acid at 10-3 mol•L-1 significantly reduced the activities of antioxidant enzyme, while the content of MDA in alfalfa seedling was significantly increased. The restrain effects became weakened with the treat concentration falled. However, ferulic acid, coumarin and vanillic acid could increase the activities of antioxidant enzyme at 10-6mol•L-1.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

花椒(Zanthoxylum bungeanum Maxim.)是川西地区重要的经济植物,化感作用是花椒连作障碍的原因之一,而花椒凋落物和根系分泌物对土壤质量的影响是花椒化感作用的一个重要方面。系统研究花椒如何影响土壤有助于深入理解和解决花椒连作障碍。本文主要以大红袍(10a生)花椒叶和种植过花椒的土壤的浸提液浇灌花椒幼苗进行试验,分析叶浸提液与土壤浸提液对非花椒生长土壤中土壤微生物、土壤酶及土壤化学性质的影响。主要结果如下: 1.花椒叶浸提液和土壤浸提液减少了土壤中微生物的种类、组成和数量。本试验中未施加浸提液的土样中根际微生物明显高于非根际区,在经过花椒叶浸提液处理后,根际细菌、真菌和放线菌数量以及微生物总数都有所减少,这样将会导致土壤中的有效养分的供给减少,进而可能影响植物的生长。 2.施加花椒叶浸提液和土壤浸提液,以及花椒幼苗的栽种,对不同土样中的土壤酶各有促进和抑制作用。在浸提液处理下,水解酶之间及氧化还原酶之间各存在相互促进作用。 3.施加花椒叶浸提液和土壤浸提液均抑制了根际土中全氮和有机质含量,叶浸提液还抑制了无苗土中全磷含量,土壤浸提液还抑制了无苗土中全氮含量与根际土全磷、有机质含量。但两种浸提液均促进了根际土中有效磷和水解性氮含量、根外土中全磷含量,叶浸提液促进了根际土中全磷含量,土壤浸提液促进了根外土中有效磷含量。全氮和有机质含量的下降可能对植物生长发育不利。 4.土壤化学性质与土壤酶活性在不同土样中有不同的相关性。全氮含量在施加叶浸提液的土样中与蛋白酶活性呈正相关。水解性氮含量在施加叶浸提液的土样中与蛋白酶活性、蔗糖酶活性呈正相关。全磷含量在施加叶浸提液的土样中与多酚氧化酶活性呈正相关;在施加土壤浸提液的土样中与蛋白酶活性、蔗糖酶活性呈正相关,与多酚氧化酶活性呈负相关。有效磷含量在施加叶浸提液的土样中与多酚氧化酶活性呈正相关,与蛋白酶活性呈负相关;在施加土壤浸提液的土样中与蛋白酶活性、过氧化氢酶活性呈正相关。有机质含量在施加叶浸提液的土样中与蛋白酶活性、蔗糖酶活性呈正相关。 Zanthoxylum bungeanum is one of the most important cash crops in Eastern Tibetan Plateau. Allelopathic effects could be one of reasons for Z. bungeanum’s continuous cropping impediment. The effects of secretion of leaf and root of Z. bungeanum on soil quality is a important way of Z. bungeanum’s allelopathic effects. However, allelopathic effect of Z.bungeanum on soil microbes, enzyme activities and chemical property were seldom studied. In this study, leaf and soil extracts of Da Hongpao(DHP), the most common varieties of Z.bungeanum in this area, were used to assess allelopathic effect of Z. bungeanum on soil biology and biochemistry by pot experiments . The main results showed that: 1. The irrigation of two kinds of extracts reduced the species, component and quantity of soil microbes. In rhizosphere soil which irrigated by distilled water, the quantity of soil microbes is significantly different from exoroot soil. In rhizosphere soil which irrigated by leaf extracts, the quantity of bacterial, fungi, actionmycete and gross of microbes were decreased, it may resulted in reduce of Available nutrient in soil, and influenced the growth of plants. 2.The irrigation of two kind of extracts reduced or enhanced the enzyme activities in different soils. Interaction between hydrolytic ferments and redoxases were promoted each other. 3. The irrigation of two kinds of extracts reduced the total N and organic matter in rhizosphere soil. Leaf extracts also reduced the total P in soil without seedling. Soil extracts reduced total N in soil without seedling and total P, organic matter in rhizosphere soil. But both extracts also enhanced available P and hydrolysable N in rhizosphere soil, total P in exoroot soil. Leaf extracts enhanced total P in rhizosphere soil. Soil extracts enhanced available P in exoroot soil. The reduction of total N and organic matter may influence growth of plants. 4.Positive correlations between total N and prolease, hydrolysable N and prolease, hydrolysable N and saccharase, total P and polyphenol oxidase, available P and polyphenoloxidase, organic matter and prolease, organic matter and saccharase, were studied in soil irrigated by leaf extracts. In soil irrigated by soil extracts, there are positive correlations between total P and prolease, total P and saccharase, available P and prolease, available P and catalase, while negative correlation between total P and polyphenoloxidase, available P and prolease, available P and catalase was found.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

香豆素类物质是苯丙酸内酯(环酯)类化合物,绝大部分高等植物通过次生代谢途径都能合成。研究表明,香豆素类物质是花椒体内最重要的化感物质,系统研究香豆素类物质的作用机理有助于理解和最终解决花椒连作障碍。本文通过研究香豆素对几种植物种子特别是苜蓿种子萌发、苜蓿幼苗初级氮同化的影响,从生理生化角度揭示香豆素的作用方式,为花椒连作障碍的解决和化感作用机制的深入理解提供依据。主要研究结果如下:1. 研究了香豆素对6 种常见作物种子萌发的影响,并对一组数据采用4个不同的指标进行评价,对生物测定化感作用中存在的问题进行了讨论。结果发现1.0mM的香豆素对采用的6 种作物的种子萌发均表现出一定的化感作用,4 个指标的敏感程度依次为S (发芽速度)>AS(累积发芽速度)>CRG(发芽指数)>GT(最终发芽率)。种子萌发实验是化感作用研究中最重要、应用最广泛的生物测定方法之一,应根据不同的研究目的合理采用指标和实验方法。2. 采用培养皿试纸法进行种子萌发试验,研究了香豆素水溶液在苜蓿种子萌发过程中对其吸水、电导率及抗氧化保护酶活性的影响。结果表明,影响苜蓿种子发芽的香豆素浓度阀值为0.3mM。香豆素在1.0mM 的浓度下降低了苜蓿种子吸水阶段Ⅱ的吸水速度,使其外渗物质增多,电导率增大,并显著抑制了超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性,同时种子体内丙二醛(MDA)的含量显著增大。高浓度香豆素破坏了膜的结构、影响了抗氧化保护酶的活性是香豆素降低苜蓿发芽率的原因之一,也可能是影响花椒-苜蓿间作的关键因素之一。3. 不同浓度(0、25 μM、50 μM、0.1 mM、1.0 mM)化感活性物质香豆素对10 日龄苜蓿幼苗初级氮同化的影响的结果表明25 µM~50 µM 的香豆素加快了苜蓿幼苗对硝态氮的吸收。高浓度的香豆素导致苜蓿根系和叶片内可溶性蛋白含量降低、鲜重减小、地下鲜重/地上鲜重(R/S)的比值升高,根系中初级氮同化的关键酶硝酸还原酶(NR)、谷氨酸胺合成酶(GS)、谷氨酸脱氢酶(GDH)的活性降低,叶片中NR、GS 的活性减低、叶绿素含量减少,而GDH 的活性升高。香豆素影响苜蓿幼苗氮代谢和氨同化的关键酶,导致体内养分的缺失是香豆素抑制苜蓿幼苗生长的机理之一。Coumarins are lactones of o-hydroxycinnamic acid, and are allelopathiccompounds that originate in the phenylpropanoid pathway. They are synthesized byalmost all higher plants. According to previous studies, coumarins were mostimportant allelochemicals in Chinese prickly ash. Systematically research of theeffect of coumarin could help to comprehend the continuous cropping impediment.The effects of coumarin on seed germination and primary nitrogen assimilation ofalfalfa were studied. The main results showed that:1. We compared four common germination indices (S, AS, CRG, GT)preciously calculated with the same date. The results showed that, at theconcentration of 1.0 mM, coumarin inhibited seeds germination. Among all indices,the S index was most sensitive, followed by the AS and CRG indices. Andsuggestions on the expression of bioassay results were also provided.2. At concentrations above 0.3 mM, coumarin inhibited seed germination in aconcentration-dependent manner. During seed imbibitionⅡ, coumarin at 1.0 mMsignificantly reduced the activities of superoxide dismutase (SOD), catalase (CAT),peroxidase (POD), while the content of malonyldialdehyde (MDA) in alfalfa seedssignificantly increased. The higher concentration coumarin destroyed structure ofmembrane and influenced activities of antioxidant enzymes, which might be one ofthe reasons that coumarin decreased germination rate of alfalfa, and one of the keyfactors influencing Chinese prickly ash-alfalfa intercropping.3. Alfalfa plants were exposed to different concentration of coumarin (0、25μM、50 μM、0.1 mM、1.0 mM) grown for 10 days on control medium. Coumarin, in the range of 25 μM~50 μM, significantly stimulated the net nitrate uptake.Increasing coumarin concentration led to a decrease of protein contents in theleaves and roots. The root to shoot (R/S) FW ratio was increased by increasingcoumarin concentration. Under high coumarin concentration, the activities of nitratereductase (NR) and glutamine synthetase (GS) were repressed in the roots andleaves. Glutamate dehydrogenase (GDH) was inhibited in the roots, while enhancedin the leaves. Chlorophyll contents in the leaves were also decreased under highcoumain concentration. Coumarin decreased alfalfa growth by (i) nutritionaldeficiencies shown by the decrease of nitrate, (ii) lowered N compound synthesisvia inhibition of nitrate reduction and ammonium assimilation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

近年来,随着对作物重茬(连年种植)障碍原因的深入研究,植物的化感作用越来越受到国内外众多学者的重视。而作为重要调料和药用植物的生姜,其连作障碍也备受关注,系统地研究生姜化感作用将有助于理解和最终解决生姜连作障碍问题。本文通过研究生姜不同部位、不同浓度的水浸液对与其间作的两个物种(大豆和四季葱)种子的萌发及幼苗生长的影响,从而证明生姜化感作用的存在;并通过温室盆栽实验研究了生姜的自毒作用(即研究生姜不同部位、不同浓度的水浸液对其幼苗的形态、生理生化、光合作用、土壤酶、土壤微生物多样性及土壤养分的影响),从而揭示生姜退化和衰老的机制,并为生姜筛选出合适的间作物种提供科学依据,对生姜连作障碍提出科学的解决方法。主要研究结果如下: 1. 与对照相比,生姜所有部位(根茎、茎、叶)、所有浓度(10、20、40、 80 g l-1)的水浸液均抑制了大豆种子和葱籽的萌发率、幼苗生长、水分吸收和脂肪酶活性,并且其抑制程度随着水浸液浓度的增加而增强,其生姜各部位水浸液抑制效应的强弱顺序为茎>叶>根茎。这一结果表明生姜根茎、茎、叶含有能够抑制大豆种子和葱籽种子萌发和幼苗生长的水溶性化感物质。根茎是生姜的主要收获部位,而生姜的残株(主要是茎和叶)应该从大田中处理掉以减轻其抑制效应。生姜水浸液中主要化感成分包括:根茎水浸液中主要是丁香酸和伞花内脂;茎水浸液中主要是阿魏酸,且其含量最高为73.4 ug/g;叶水浸液中除了阿魏酸,其他六种物质均检测出来,但含量较高的主要有丁香酸、伞花内脂和香豆酸。 2. 生姜茎和叶不同浓度的水浸液均显著抑制了生姜幼苗的株高、每株叶片数和叶面积,其抑制程度随着水浸液浓度的增加而有所增强,而生姜幼苗每株分枝数差异不显著;同时生姜水浸液也极大程度地影响了生姜幼苗的生物量(包括地下生物量、地上生物量和总生物量,均为鲜重)。在同一浓度下,茎水浸液对生姜幼苗形态指标及生物量指标均显示出最强的抑制作用,叶水浸液次之,根茎水浸液最弱。与对照相比,低浓度的生姜根茎水浸液提高了生姜幼苗叶片内四种抗氧化酶(SOD、POD、CAT、APX)活性,高浓度的根茎水浸液抑制了四种抗氧化酶活性,而茎和叶水浸液均随着浓度的增加而抑制了四种抗氧化酶活性,三种水浸液均随着浓度的增加降低了生姜幼苗叶片内叶绿素的含量,而增加了生姜幼苗叶片的相对电导率和丙二醛含量。同时,三种水浸液均随着浓度的增加降低了生姜幼苗的光合参数(包括胞间CO2浓度、气孔导度、蒸腾速率及净光合速率)。 3. 三种生姜水浸液对所测六种土壤酶活性均产生了不同程度的影响,其中影响最大的是酸性磷酸酶和蔗糖酶,在10 g l-1 时就达到了显著水平,并且所有酶均有随着水浸液浓度增加而增大的趋势;相同部位的水浸液随着浓度的增加,细菌和真菌的数量呈增加趋势,而放线菌的数量呈减少趋势;三种生姜水浸液均随着浓度的增加降低了土壤中有机质的含量,加剧了土壤中硝态氮含量的积累,根茎水浸液对土壤有效磷、速效钾和铵态氮均显示出低浓度提高其含量而高浓度降低其含量的趋势,而茎和叶水浸液则随着浓度的增加均降低了其含量。 4. 与生姜单作相比,所有间作系统均在旺盛生长期和收获期不同程度地提高了土壤酶活性,同时也增加了土壤细菌数量及土壤微生物总数但不显著;所有间作系统在旺盛生长期和收获期均不同程度地影响了土壤真菌及放线菌数量(增加或减少),所有间作系统间的多样性指数差异不显著,除了旺盛生长期四种作物(生姜-大豆-四季葱-大蒜)的间作模式显著降低了多样性指数,其值仅为生姜单作的33.18%;生姜与大豆间作不仅提高了19.6%的生姜产量而且获得了较好的经济效益,并且,所有间作系统均显著抑制了生姜姜瘟病的发生。 5. 不同栽培模式不同程度地影响了收获期生姜的株高、分枝数、根茎产量及内在品质。其中处理2显著地促进了生姜的分枝(10.5%),同时处理2、3和4也促进了生姜的生长(株高分别增加了15.0%、11.4%和14.0%),并且这三个处理提高了生姜的产量;处理2和3能有效提高生姜块茎中维生素C(分别较单作生姜显著提高了3.29%和4.05%)、处理3显著提高了可溶性糖(8.2%)、姜辣素(4.6%)和蛋白质等有益物质的含量,降低硝酸盐有害物质的含量(处理2显著降低了14.0%),改善了姜块的外观和内在品质。并且,生姜与大豆间作具有最高的纯收入和产投比,分别较生姜单作提高了24.80%和8.8%。Recently, allelopathy has been more and more paid attentions by national and foreign scholars with profound research on reasons of crop replanted (continuous planted) obstacle. Ginger rhizome is valuable all over the world either as a spice or herbal medicine and ginger replanted obstacle is also paid attentions. Systematic research on ginger allelopathy will contribute to understanding and ultimate solving problem of ginger replanted obstacle. The effects of ginger aqueous extracts with different parts and concentrations on seed germination and early seedling growth of soybean and chive were studied in this article to testify that ginger existed allelopathy. Furthermore, ginger autotoxicity was also studied by pot experiment in greenhouse (namely research on effects of ginger aqueous extracts with different parts and concentrations on morphological indexes, physiological and biochemical indexes, photosynthesis, soil enzymes, soil microbial diversity and soil nutrients) to reveal mechanism of ginger degeneration and senescence, provide scientific basis for selecting appropriate intercropping species and put forward scientific resolvent for ginger replanted obstacle. The main results were as follows: 1. All aqueous extracts at all concentrations inhibited seed germination, seedling growth, water uptake and lipase activity of soybean and chive compared with the control, and the degree of inhibition increased with the incremental extracts concentration. The degree of toxicity of different ginger plant parts can be classified in order of decreasing inhibition as stem>leaf>rhizome. The results of this study suggested that rhizome, stem and leaf of ginger contained water soluble allelochemicals which could inhibit seed germination and seedling growth of soybean and chive. The rhizome is the main harvested part of ginger. The residue (mainly stems and leaves) of the ginger plant should be removed from the field so as to diminish its inhibitory effect. The main allelopathic components of three kind of aqueous extracts were as follows: Rhizome extract chiefly contained syringic acid and vmbelliferone and stem extract mainly contained frulic acid whose content was the highest (73.4 ug/g). The other six substances were detected except of frulic acid, but only contents of syringic acid, vmbelliferone and p-coumaric acid were higher. 2. Stem and leaf aqueous extracts of ginger with different concentrations significantly inhibited plant height, leaf numbers per plant and leaf area, and the degree of inhibition increased with the incremental extracts concentration. However, tiller number per plant of ginger seedling showed no significant difference. At the same time, ginger aqueous extracts also influenced biomass including under-ground biomass, above-ground biomass and total biomass (fresh weight) to a large extent. Under the same concentration, stem aqueous extract showed the mostly inhibitory effect on morphological indexes and biomass indexes of ginger seedling. Rhizome aqueous extract showed the leastly inhibitory effect and leaf aqueous extract was intervenient. Enhanced concentration of ginger aqueous extracts significantly reduced total chlorophyll content, accompanying with increases in memberane permeability (REL) and lipid peroxidation (MDA). Compared with the control, rhizome ginger aqueous extract of lower concentration (10 g l-1) increased the activities of major antioxidant enzymes (superoxide dismutase, SOD; peroxidase, POD; catalase, CAT; ascorbate peroxidase, APX) of ginger leaf tissue and higher concentration inhibited the activities of four antioxidant enzymes. However, stem and leaf aqueous extract inhibited the activities of four antioxidant enzymes with increase in concentration. Meanwhile, enhanced concentration of ginger aqueous extracts significantly reduced photo-parameters of ginger seedling (including CO2 concentration, stoma conductivity, net photosynthesis rate and transpiration rate). 3. Rhizome, stem and leaf ginger aqueous extract showed different effect on six soil enzyme activities, and acid phosphatase and invertase showed significant effect when aqueous extract concentration got 10 g l-1. Furthermore, six soil enzyme activities increased with increase in aqueous extract concentration. Bcterial and fungi number tended to increase while antinomyces tented to decrease with the increase in aqueous extract concentration of identical part. Ginger aqueous extracts reduced soil organic matter content with increased concentration, accompanying with NO3-—N accumulation in soil. Rhizome aqueous extract showed the same tendency for available P, available K and NH4+—N, namely lower concentration increased their contents in soil and higher concentration reduced their contents. While stem and leaf aqueous extracts reduced their contents with the increamental concentration. 4. All intercropping systems increased soil enzyme activities to different extent both at VGS and at HS compared to solo ginger. All intercropping systems increased the colony numbers of soil bacteria and total of soil microbe but not significantly either at VGS or at HS. All intercropping systems increased the colony numbers of soil fungi and actinomytes to a different extent (increase or decrease) both at VGS and at HS. For DI, difference between all cultivation patterns and S-G was not significant either at VGS or at HS except that G-S-C-G whose value was only 33.18% of S-G at VGS significantly decreased. G-S not only increased ginger yield by 19.6% but also obtained better economic benefit. Furthermore, all intercropping systems significantly inhibited occurrence of bacterial wilt of ginger. 5. Different cultivated pattern influenced plant height, tiller numbers, rhizome yields and intrinsic quality of ginger. Treatment 2 significantly facilitated tiller occurring (10.5%). Treatment 2, 3 and 4 promoted ginger growth (plant height respectively increased 15.0%、11.4% and 14.0%) and enhanced rhizome yields. Treatment 2 and 3 effectively increased vitamin C content (significantly increased 3.29% and 4.05% compared to solo ginger). Treatment 3 significantly increased contents of beneficial substances such as soluble sugar (8.2%), gingerols (4.6%) and protein. Treatment 2 significantly decreased contents of deleterious substance namely nitrate (14.0%) and improved appearance and intrinsic quality of ginger rhizome. Furthermore, treatment 2 (ginger/soybean intercropping) could obtain better economic benefit and showed the highest net income and ratio of benefit and cost whose values respectively increased by 24.80% and 8.8% compared to solo ginger.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

揭示黄瓜产生连作障碍的机理,为设施蔬菜的可持续发展和减轻连作障碍提供参考依据。【方法】在日光温室内进行田间试验,以露地玉米地土壤为对照,研究不同连作年限(4,5,8和12年)下黄瓜产量和品质及土壤酶活性的变化。【结果】随着黄瓜连作年限的增加,黄瓜产量、可溶性固形物和维生素C含量均下降,硝酸盐含量上升,土壤呼吸强度降低,土壤脲酶活性、蔗糖酶活性、碱性磷酸酶活性均呈先上升后降低的趋势;随着黄瓜生长季节的变化,土壤脲酶活性呈先上升后降低再升高的趋势,土壤蔗糖酶活性、碱性磷酸酶活性和土壤呼吸强度均呈先上升后降低的趋势。【结论】随着连作年限的延长,设施黄瓜的产量和品质均下降,土壤脲酶、蔗糖酶和碱性磷酸酶活性均呈先升高后降低的趋势。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to growing land scarcity and lack of nutrient inputs, African farmers switched from shifting cultivation to continuous cropping and extended crop area by bringing fragile lands such as river banks and hill slopes into production. This accelerated soil fertility decline caused by erosion, harvesting and insufficient nutrient replenishment. We explored the feasibility to reduce nutrient depletion by increasing nutrient utilization efficiencies, while diversifying and increasing food production through the development of integrated aquaculture – agriculture (IAA). Considering the climatic conditions prevailing in Kenyan highlands, aquaculture production scenarios were ideotyped per agro-ecological zone. These aquaculture production scenarios were integrated into existing NUTrient MONitoring (NUTMON) farm survey data for the area. The nutrient balances and flows of the resulting IAA-systems were compared to present land use. The effects of IAA development on nutrient depletion and total food production were evaluated. With the development of IAA systems, nutrient depletion rates dropped by 23–35%, agricultural production increased by 2–26% and overall farm food production increased by 22–70%. The study demonstrates that from a bio-physical point of view, the development of IAA-systems in Africa is technically possible and could raise soil fertility and total farm production. Further studies that evaluate the economic feasibility and impacts on the livelihood of farming households are recommended.