873 resultados para Continuous Rotation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The aim of the present work was to evaluate the resistance to flexural fatigue of Reciproc R25 nickel-titanium files, 25 mm, used in continuous rotation motion or reciprocation motion, in dynamic assays device. Methods: Thirty-six Reciproc R25 files were divided into 2 groups (n = 18) according to kinematics applied, continuous rotary (group CR) and reciprocation motion (group RM). The files were submitted to dynamic assays device moved by an electric engine with 300 rpm of speed that permitted the reproduction of pecking motion. The files run on a ring's groove of temperate steel, simulating instrumentation of a curved root canal with 400 and 5 mm of curvature radius. The fracture of file was detected by sensor of device, and the time was marked. The data were analyzed statistically by Student's t test, with level of significance of 95%. Results: The instruments moved by reciprocating movement reached significantly higher numbers of cycles before fracture (mean, 1787.78 cycles) when compared with instruments moved by continuous rotary (mean, 816.39 cycles). Conclusions: The results showed that the reciprocation motion improves flexural fatigue resistance in nickel-titanium instrument Reciproc R25 when compared with continuous rotation movement. (J Endod 2012;38:684-687)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Unilateral intrahippocampal injections of tetrodotoxin were used to temporarily inactivate one hippocampus during specific phases of training in an active allothetic place avoidance task. The rat was required to use landmarks in the room to avoid a room-defined sector of a slowly rotating circular arena. The continuous rotation dissociated room cues from arena cues and moved the arena surface through a part of the room in which foot-shock was delivered. The rat had to move away from the shock zone to prevent being transported there by the rotation. Unilateral hippocampal inactivations profoundly impaired acquisition and retrieval of the allothetic place avoidance. Posttraining unilateral hippocampal inactivation also impaired performance in subsequent sessions. This allothetic place avoidance task seems more sensitive to hippocampal disruption than the standard water maze task because the same unilateral hippocampal inactivation does not impair performance of the variable-start, fixed hidden goal task after procedural training. The results suggest that the hippocampus not only encodes allothetic relationships amongst landmarks, it also organizes perceived allothetic stimuli into systems of mutually stable coordinates. The latter function apparently requires greater hippocampal integrity.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The objective of this experiment was to study the effects of soil management systems on the bulk density, chemical soil properties, and on the soil microbial activity on a Latossolo Vermelho distrófico (Oxisol). Soil samples were collected from plots under the following management conditions: a) natural dense "cerrado" vegetation (savanna); b) degraded Brachiaria decumbens pasture, 20 years old; c) no-tillage treatment with annual crop sequence (bean, corn, soybean and dark-oat in continuous rotation), 8 years old; d) conventional tillage treatment with crop residues added to the soil, and annual crop sequence, 10 years old. The continuous use of no-tillage system resulted in an increase in microbial biomass and decrease in soil basal respiration, therefore displaying evident long-term effects on the increase of soil C content. The no-tillage system also provided an improvement in bulk density and chemical properties of the soil. Hence, the no-tillage management system could be an alternative for the conservation and maintenance of physical and chemical conditions and the productive potential of "cerrado" soils.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report rotation of a single director in a nematic monodomain, acrylate based side-chain elastomer which was subjected to mechanical fields applied at angles in the range to the director, , present at the time of network formation. Time and spatially resolving wide angle X-ray scattering, together with polarised light microscopy measurements revealed a pronounced, almost discontinuous switching mode at a critical extension as the strain was applied at angles approaching to , whereas a more continuous rotation was seen when the strain was applied at more acute angles. This director reorientation was more or less uniform across the complete sample and was accompanied by a modest decrease in orientation parameter . At strains sufficient to induce switching there was some continuous distribution of director orientations with fluctuations of 10 although there was no evidence for any localised director inhomogenities such as domain formation. The observed deformation behaviour of these acrylate-based nematic monodomains was in accord with the predictions of a theory developed by Bladon et al., in that the complete set of data could be accounted for through a single parameter describing the chain anisotropy. The experimentally deduced chain anisotropy parameter was in broad agreement with that obtained from small-angle neutron scattering procedures, but was somewhat greater than that obtained by spontaneous shape changes at the nematic-isotropic transition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho teve por objetivo estudar os efeitos de diferentes sistemas de uso e manejo na densidade do solo nas suas propriedades químicas e na atividade microbiana em um Latossolo Vermelho distrófico (Oxisol). As amostras de solo foram retiradas de parcelas dos seguintes tratamentos: cerrado denso preservado, pastagem de Brachiaria decumbens degradada (20 anos), plantio direto com rotação de culturas (8 anos) e sistema convencional com rotação de culturas anuais (10 anos). O delineamento experimental utilizado foi o inteiramente casualizado, com dez repetições. O uso contínuo de plantio direto resultou em mais alta taxa de C-biomassa microbiana e menor perda relativa de carbono pela respiração basal, podendo determinar, desta forma, maior acúmulo de C no solo a longo prazo. Proporcionou, ainda, melhoria na densidade aparente e nas propriedades químicas do solo. Assim, o sistema plantio direto, com manejo de culturas, mostrou ser uma alternativa para a conservação e manutenção das condições físicas e do potencial produtivo de solos de cerrado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo teve como objetivo avaliar a resistência à fadiga cíclica flexural dos instrumentos de níquel- titânio, Hyflex CM (Coltène, EUA) e TF Adaptive (SybronEndo, EUA) em diferentes situações experimentais. Todas as limas que foram selecionadas possuíam conicidade 0,04 e diâmetro de ponta 35. Utilizou-se um dispositivo desenvolvido especificamente para realizar o ensaio flexural dinâmico. Os instrumentos TF Adaptive foram divididos em 3 grupos de acordo com o ângulo de curvatura do ensaio: 45º, 60º e 90º e cada grupo subdividido em 2 subgrupos de acordo com o tipo de movimento: rotação contínua e Adaptive. Cada subgrupo era composto por 15 instrumentos TF Adaptive, totalizando 90 instrumentos. Quinze instrumentos Hyflex CM formavam o grupo 4, no ensaio com ângulo de curvatura 90 graus e rotação contínua. A simulação foi realizada em canais artificiais de aço com ângulo de 45, 60, 90 graus e raio 5m m. O número de ciclos e o tempo em segundos até a fratura foram tabulados e analisados. Entretanto, a fadiga cíclica flexural foi significante maior nos três grupos em movimento Adaptive. E as limas TF Adaptive em seu próprio movimento tiveram maior número de ciclos e tempo até a fratura quando comparadas as Hyflex CM no ensaio de 90 graus. Portanto, conclui-se que o sistema Adaptive (limas TF Adaptive + movimento Adaptive) foi mais seguro à resistência á fadiga flexural, e no ensaio de 90 graus o sistema Adaptive foi mais resistente quando comparado com as limas Hyflex CM no movimento de rotação contínua.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introdução: A extrusão apical detritos (EAD) consequência indesejável da instrumentação canalar pode ser associada a dor/edema, podendo atrasar a cicatrização periapical. O nosso trabalho teve como objectivo avaliar e quantificar a EAD em canais instrumentados por sistemas de instrumentação rotatória contínua e reciprocante. Materiais e Métodos: 80 dentes monocanalares sem tratamento endodôntico prévio foram aleatoriamente divididos em 4 grupos (n=20): One Shape® Protaper® NEXT, Hyflex® EDM e WaveOne® Gold. Um tubo de Eppendorf (TdE) foi pesado antecipadamente numa balança analítica de precisão e com um dente inserido foi montado num dispositivo modificado, similar ao método descrito por Myers & Montgomery. Os canais foram instrumentados e irrigados com água destilada. Os dentes instrumentados foram removidos dos TdE e estes preenchidos com água destilada até perfazer 1,5ml, incubados a 70ºC durante cinco dias sendo pesados novamente, calculando a diferença entre o peso inicial e final determinando o peso dos detritos. Os dados foram analisados estatisticamente utilizando o IBM SPSS Statistics 22, considerando α=0,05. Efetuaram-se testes Kruskal-Wallis e post-hoc com ajustamento do ρ-value pelo método Dunn-Bonferroni. Resultados: Houve EAD em todas as técnicas de instrumentação. A análise estatística mostrou haver diferenças significativas na EAD entre as técnicas utilizadas (α=0,002). Entre as técnicas WaveOne® Gold e One Shape® (α=0,003), WaveOne® Gold e Protaper® NEXT (α=0,023) e WaveOne® Gold e Hyflex® EDM (α=0,028). Conclusões: A técnica One Shape® apresentou menor EAD e a técnica WaveOne® Gold com movimento reciprocante constitui maior fator de risco tendo apresentado maior EAD. Os resultados deste estudo indicam que os profissionais devem estar cientes para a EAD que pode ocorrer com cada instrumento, o que poderá servir de base para a selecção de um instrumento particular. Implicações clínicas: A escolha do sistema de instrumentação canalar influencia a extrusão de detritos. Fontes de financiamento: Agradecimentos as empresas; Micro-Mega, França, COLTÉNE e Dentsply Maillefer, Suíça.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jet-cooled, laser-induced phosphorescence excitation spectra (LIP) of thioacetaldehyde CH3CHS, CH3CDS, CD3CHS and CD3CDS have been observed over the region 15800 - 17300 cm"^ in a continuous pyrolysis jet. The vibronic band structure of the singlet-triplet n -* n* transition were attributed to the strong coupling of the methyl torsion and aldehydic hydrogen wagging modes . The vibronic peaks have been assigned in terms of two upper electronic state (T^) vibrations; the methyl torsion mode v^g, and the aldehydic hydrogen wagging mode v^^. The electronic origin O^a^ is unequivocally assigned as follows: CH3CHS (16294.9 cm"'' ), CH3CDS (16360.9 cm"'' ), CD3CHS (16299.7 cm"^ ), and CD3CDS (16367.2 cm"'' ). To obtain structural and dynamical information about the two electronic states, potential surfaces V(e,a) for the 6 (methyl torsion) and a (hydrogen wagging) motions were generated by ab initio quantum mechanical calculations with a 6-3 IG* basis in which the structural parameters were fully relaxed. The kinetic energy coefficients BQ(a,e) , B^(a,G) , and the cross coupling term B^(a,e) , were accurately represented as functions of the two active coordinates, a and 9. The calculations reveal that the molecule adopts an eclipsed conformation for the lower Sq electronic state (a=0°,e=0"') with a barrier height to internal rotation of 541.5 cm"^ which is to be compared to 549.8 cm"^ obtained from the microwave experiment. The conformation of the upper T^ electronic state was found to be staggered (a=24 . 68° ,e=-45. 66° ) . The saddle point in the path traced out by the aldehyde wagging motion was calculated to be 175 cm"^ above the equilibrium configuration. The corresponding maxima in the path taken by methyl torsion was found to be 322 cm'\ The small amplitude normal vibrational modes were also calculated to aid in the assignment of the spectra. Torsional-wagging energy manifolds for the two states were derived from the Hamiltonian H(a,e) which was solved variationally using an extended two dimensional Fourier expansion as a basis set. A torsionalinversion band spectrum was derived from the calculated energy levels and Franck-Condon factors, and was compared with the experimental supersonic-jet spectra. Most of the anomalies which were associated with the interpretation of the observed spectrum could be accounted for by the band profiles derived from ab initio SCF calculations. A model describing the jet spectra was derived by scaling the ab initio potential functions. The global least squares fitting generates a triplet state potential which has a minimum at (a=22.38° ,e=-41.08°) . The flatter potential in the scaled model yielded excellent agreement between the observed and calculated frequency intervals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On-farm experiments and pot trials were conducted on eight West African soils to explore the mechanisms governing the often reported legume rotation-induced cereal growth increases in this region. Crops comprised pearl millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor Moench), maize (Zea mays L.), cowpea (Vigna unguiculata Walp.) and groundnut (Arachis hypogaea L.). In groundnut trials the observed 26 to 85% increases in total dry matter (TDM) of rotation cereals (RC) compared with continuous cereals (CC) in the 4th year appeared to be triggered by site- and crop-specific early season differences in nematode infestation (up to 6-fold lower in RC than in CC), enhanced Nmin and a 7% increase in mycorrhizal (AM) infection. In cowpea trials yield effects on millet and differences in nematode numbers, Nmin and AM were much smaller. Rhizosphere studies indicated effects on pH and acid phosphatase activity as secondary causes for the observed growth differences between RC and CC. In the study region legume-rotation effects on cereals seemed to depend on the capability of the legume to suppress nematodes and to enhance early N and P availability for the subsequent cereal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increased use of cereal/legume crop rotation has been advocated as a strategy to increase cereal yields of subsistence farmers in West Africa, and is believed to promote changes in the rhizosphere that enhance early plant growth. In this study we investigated the microbial diversity of the rhizoplane from seedlings grown in two soils previously planted to cereal or legume from experimental plots in Gaya, Niger, and Kaboli, Togo. Soils from these legume rotation and continuous cereal plots were placed into containers and sown in a growth chamber with maize (Zea mays L.), millet (Pennisetum glaucum L.), sorghum (Sorghum bicolor L. Moench.), cowpea (Vigna unguiculata L.) or groundnut (Arachis hypogaea L.). At 7 and 14 days after sowing, 16S rDNA profiles of the eubacterial and ammoniaoxidizing communities from the rhizoplane and bulk soil were generated using denaturing gradient gel electrophoresis (DGGE). Community profiles were subjected to peak fitting analyses to quantify the DNA band position and intensities, after which these data were compared using correspondence and principal components analysis. The data showed that cropping system had a highly significant effect on community structure (p <0.005), irrespective of plant species or sampling time. Continuous cereal-soil grown plants had highly similar rhizoplane communities across crop species and sites, whereas communities from the rotation soil showed greater variability and clustered with respect to plant species. Analyses of the ammonia-oxidizing communities provided no evidence of any effects of plant species or management history on ammonia oxidizers in soil from Kaboli, but there were large shifts with respect to this group of bacteria in soils from Gaya. The results of these analyses show that crop rotation can cause significant shifts in rhizosphere bacterial communities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cereal yield increases in legume rotations on west African soils were the subject of much recent research aiming at the development of more productive cropping systems for the mainly subsistence-oriented agriculture in this region. However, little has been done to elucidate the possible contribution of soil microbiological factors to these rotation effects. Therefore a pot trial was conducted using legume rotation and continuous cereal soils each from one site in Burkina Faso and two sites in Togo where cropping system experiments had been conducted over 4 yrs. All soils were planted with seedlings of sorghum (Sorghum bicolor L. Moench). From 21 days after sowing onwards relative growth rates in rotation soils were higher than in the continuous cereal soils, resulting in between 69 and 500% higher shoot dry matter of rotation sorghum compared to sorghum growing in continuous cereal soils. Across sites rotation soils were characterized by higher pH, higher microbial N and a lower microbial biomass C/N ratio and, with the exception of one site, a higher fungal biomass in the rhizosphere. The bacterial and eukaryal community structure in the soil, assessed by denaturing gradient gel electrophoresis (DGGE), differed between sites. However, only at one site differed the bacterial and the eukaryal community structure in the rotation soil significantly from that in the continuous cereal soil. Although the results of this study confirmed the marked plantgrowth differences between sub-Saharan legume-rotation soils and their continuous cereal counterparts they also showed the difficulties to differentiate possible microbiological causes from their effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study was conducted to investigate soil biological and chemical factors that give rise to cereal yield enhancing effects of legume rotations on sandy, nutrient poor West African soils. The aim was not only to gain more information on the role of legume residues and microorganisms in the soil nutrient cycle. But the study aimed at evaluating if differences in substrate qualities (e.g. root residues) cause changes in the microbial community structure due to specific and highly complex microbe-root-soil interactions. Site and system specific reactions of microorganisms towards rewetting, simulating the onset of rainy season, were observed. Higher respiration rates, higher amounts of microbial biomass carbon (Cmic) and nitrogen (Nmic) as well as higher ergosterol, muramic acid, glucosamine and adenylate concentrations were measured in CL soils of Koukombo and in both soils from Fada. The immediate increase in ATP concentrations after rewetting was likely caused by rehydration of microbial cells where N was not immobilized and, thus, available for plants facilitating their rapid development. Legume root residues led only to slightly better plant performances compared to the control, while the application of cereal roots reduced seedling growth. In contrast to sorghum seedlings, the microbial community did not react to the mineral treatment. Thus the energy supply in form of organic amendments increased microbial indices compared to mineral P application and the control. The results of basal respiration rates, Cmic and Corg levels indicate that the microbial community in the soil from Koukombo is less efficient in substrate use compared to microorganisms in the soil from Fada. However, the continuous carbon input by legume root residues might have contributed to these differences in soil fertility. With the 33P isotopic exchange method a low buffering capacity was detected in both soils irrespective of treatments. Calculated E values (E1min to E1min-1d and E1d-3m) indicated a slowly release of P due to root turnover while applied mineral P is taken up by plants or fixed to the soil. Due to the fact that sorghum growth reacted mainly to the application of mineral P and the microorganisms solely to the organic inputs, the combination of both amendments seems to be the best approach to a sustainable increase of crop production on many nutrient-poor, sandy West African soils. In a pot experiment, were CC and CL soils from Fada and Koukombo were adjusted to the same level of P and N concentrations, crop growth was significantly higher on CL soils, compared to the respective treatments on CC soils. Mycorrhizal infection of roots was increased and the number of nematodes, predominantly free living nematodes, was almost halfed on rotation soils. In conclusion, increased nutrient availability (especially P and N) through the introduction of legumes is not the only reason for the observed yield increasing effects. Soil biological factors seem to also play an important role. In a root chamber experiment the pH gradient along the root-soil-interface was measured at three times using an antimony microelectrode. For Fada soils, pH values were higher on CL than CC soils while the opposite was true for the Koukombo soils. Site-specific differences between Fada and Koukombo soils in N content and microbial community structures might have created varying crop performances leading to the contrasting pH findings. However, the mechanisms involved in this highly complex microbe-root-soil interaction remain unclear.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present the results of a coherent narrow-band search for continuous gravitational-wave signals from the Crab and Vela pulsars conducted on Virgo VSR4 data. In order to take into account a possible small mismatch between the gravitational-wave frequency and two times the star rotation frequency, inferred from measurement of the electromagnetic pulse rate, a range of 0.02 Hz around two times the star rotational frequency has been searched for both the pulsars. No evidence for a signal has been found and 95% confidence level upper limits have been computed assuming both that polarization parameters are completely unknown and that they are known with some uncertainty, as derived from x-ray observations of the pulsar wind torii. For Vela the upper limits are comparable to the spin-down limit, computed assuming that all the observed spin-down is due to the emission of gravitational waves. For Crab the upper limits are about a factor of 2 below the spin-down limit, and represent a significant improvement with respect to past analysis. This is the first time the spin-down limit is significantly overcome in a narrow-band search.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Context. Spectrally resolved long-baseline optical/IR interferometry of rotating stars opens perspectives to investigate their fundamental parameters and the physical mechanisms that govern their interior, photosphere, and circumstellar envelope structures. Aims. Based on the signatures of stellar rotation on observed interferometric wavelength-differential phases, we aim to measure angular diameters, rotation velocities, and orientation of stellar rotation axes. Methods. We used the AMBER focal instrument at ESO-VLTI in its high-spectral resolution mode to record interferometric data on the fast rotator Achernar. Differential phases centered on the hydrogen Br gamma line (K band) were obtained during four almost consecutive nights with a continuous Earth-rotation synthesis during similar to 5h/night, corresponding to similar to 60 degrees position angle coverage per baseline. These observations were interpreted with our numerical code dedicated to long-baseline interferometry of rotating stars. Results. By fitting our model to Achernar's differential phases from AMBER, we could measure its equatorial radius R-eq = 11.6 +/- 0.3 R-circle dot, equatorial rotation velocity V-eq = 298 +/- 9 km s(-1), rotation axis inclination angle i = 101.5 +/- 5.2 degrees, and rotation axis position angle (from North to East) PA(rot) = 34.9 +/- 1.6 degrees. From these parameters and the stellar distance, the equatorial angular diameter circle divide(eq) of Achernar is found to be 2.45 +/- 0.09 mas, which is compatible with previous values derived from the commonly used visibility amplitude. In particular, circle divide(eq) and PA(rot) measured in this work with VLTI/AMBER are compatible with the values previously obtained with VLTI/VINCI. Conclusions. The present paper, based on real data, demonstrates the super-resolution potential of differential interferometry for measuring sizes, rotation velocities, and orientation of rotating stars in cases where visibility amplitudes are unavailable and/or when the star is partially or poorly resolved. In particular, we showed that differential phases allow the measurement of sizes up to similar to 4 times smaller than the diffraction-limited angular resolution of the interferometer.