995 resultados para Continental-margin
Resumo:
Changes in the Brazilian continental margins oceanic productivity and circulation over the last 27,000 years were reconstructed based on sedimentological and microfaunal analyses. Our results suggest that oceanic paleoproductivity and the supply of terrigenous sediments to the Brazilian continental margin were higher during the Last Glacial Maximum (LGM) than during the Holocene. These changes may have been primarily influenced by significant sea level fluctuations that have occurred since the late Pleistocene. During the LGM, the lower sea level, higher productivity and lower sea-surface paleotemperatures may have been the result of the offshore displacement of the main flow of the Brazil Current. However, during the Holocene, the warm waters of the Brazil Current were displaced toward the coast. This displacement contributed to the increase in water temperature and prevented an increase in oceanic productivity. The decrease in terrigenous supply since the LGM could be related to the increase of the extension of the continental shelf and/or drier climatic conditions.
Resumo:
Changes in the oxygen isotopic composition of the planktonic foraminifer Globigerinoides ruber and in the foraminifera faunal composition in a core retrieved from the southeastern Brazilian continental margin were used to infer past changes in the hydrological balance and monsoon precipitation in the western South Atlantic since the Last Glacial Maximum (LGM). The results suggest a first-order orbital (precessional) control on the South American Monsoon precipitation. This agrees with previous studies based on continental proxies except for LGM estimates provided by pollen records. The causes for this disagreement are discussed.
Resumo:
The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.
Resumo:
The crustal and lithospheric mantle structure at the south segment of the west Iberian margin was investigated along a 370 km long seismic transect. The transect goes from unthinned continental crust onshore to oceanic crust, crossing the ocean-continent transition (OCT) zone. The wide-angle data set includes recordings from 6 OBSs and 2 inland seismic stations. Kinematic and dynamic modeling provided a 2D velocity model that proved to be consistent with the modeled free-air anomaly data. The interpretation of coincident multi-channel near-vertical and wide-angle reflection data sets allowed the identification of four main crustal domains: (i) continental (east of 9.4 degrees W); (ii) continental thinning (9.4 degrees W-9.7 degrees W): (iii) transitional (9.7 degrees W-similar to 10.5 degrees W); and (iv) oceanic (west of similar to 10.5 degrees W). In the continental domain the complete crustal section of slightly thinned continental crust is present. The upper (UCC, 5.1-6.0 km/s) and the lower continental crust (LCC, 6.9-7.2 km/s) are seismically reflective and have intermediate to low P-wave velocity gradients. The middle continental crust (MCC, 6.35-6.45 km/s) is generally unreflective with low velocity gradient. The main thinning of the continental crust occurs in the thinning domain by attenuation of the UCC and the LCC. Major thinning of the MCC starts to the west of the LCC pinchout point, where it rests directly upon the mantle. In the thinning domain the Moho slope is at least 13 degrees and the continental crust thickness decreases seaward from 22 to 11 km over a similar to 35 km distance, stretched by a factor of 1.5 to 3. In the oceanic domain a two-layer high-gradient igneous crust (5.3-6.0 km/s; 6.5-7.4 km/s) was modeled. The intra-crustal interface correlates with prominent mid-basement, 10-15 km long reflections in the multi-channel seismic profile. Strong secondary reflected PmP phases require a first order discontinuity at the Moho. The sedimentary cover can be as thick as 5 km and the igneous crustal thickness varies from 4 to 11 km in the west, where the profile reaches the Madeira-Tore Rise. In the transitional domain the crust has a complex structure that varies both horizontally and vertically. Beneath the continental slope it includes exhumed continental crust (6.15-6.45 km/s). Strong diffractions were modeled to originate at the lower interface of this layer. The western segment of this transitional domain is highly reflective at all levels, probably due to dykes and sills, according to the high apparent susceptibility and density modeled at this location. Sub-Moho mantle velocity is found to be 8.0 km/s, but velocities smaller than 8.0 km/s confined to short segments are not excluded by the data. Strong P-wave wide-angle reflections are modeled to originate at depth of 20 km within the lithospheric mantle, under the eastern segment of the oceanic domain, or even deeper at the transitional domain, suggesting a layered structure for the lithospheric mantle. Both interface depths and velocities of the continental section are in good agreement to the conjugate Newfoundland margin. A similar to 40 km wide OCT having a geophysical signature distinct from the OCT to the north favors a two pulse continental breakup.
Resumo:
Settling particles were collected using sediment traps deployed along three transects in the Lacaze-Duthiers and Cap de Creus canyons and the adjacent southern open slope from October 2005 to October 2006. The settling material was analyzed to obtain total mass fluxes and main constituent contents (organic matter, opal, calcium carbonate, and siliciclastics). Cascades of dense shelf water from the continental shelf edge to the lower continental slope occurred from January to March 2006. They were traced through strong negative near-bottom temperature anomalies and increased current speeds, and generated two intense pulses of mass fluxes in January and March 2006. This oceanographic phenomenon appeared as the major physical forcing of settling particles at almost all stations, and caused both high seasonal variability in mass fluxes and important qualitative changes in settling material. Fluxes during the dense shelf water cascading (DSWC) event ranged from 90.1 g m(-2) d(-1) at the middle Cap de Creus canyon (1000 m) to 3.2 g m(-2) d(-1) at the canyon mouth (1900 m). Fractions of organic matter, opal and calcium carbonate components increased seaward, thus diminishing the siliciclastic fraction. Temporal variability of the major components was larger in the canyon mouth and open slope sites, due to the mixed impact of dense shelf water cascading processes and the pelagic biological production. Results indicate that the cascading event remobilized and homogenized large amounts of material down canyon and southwardly along the continental slope contributing to a better understanding of the off-shelf particle transport and the internal dynamics of DSWC events.
Resumo:
Palynomorphs from two siliciclastic margins were examined to gain insights into continental margin architecture. Sea level change is thought to be one of the primary controls on continental margin architecture. Because Late Neogene glacioeustasy has been well studied marine sediments deposited during the Late Neogene were examined to test this concept. Cores from the outer shelf and upper slope were taken from the New Jersey margin in the western North Atlantic Ocean and from the Sunda Shelf margin in the South China Sea. Continental margin architecture is often described in a sequence stratigraphic context. One of the main goals of both coring projects was to test the theoretical sequence stratigraphic models developed by a research group at Exxon (e.g. Wilgus et al., 1988). Palynomorphs provide one of the few methods of inferring continental margin architecture in monotonous, siliciclastic marine sediments where calcareous sediments are rare (e.g. New Jersey margin). In this study theoretical models of the palynological signature expected in sediment packages deposited during the various increments of a glacioeustatic cycle were designed. These models were based on the modem palynomorph trends and taphonomic factors thought to control palynomorph distribution. Both terrestrial (pollen and spores) and marine (dinocysts) palynomorphs were examined. The palynological model was then compared with New Jersey margin and Sunda Shelf margin sediments. The predicted palynological trends provided a means of identifying a complete cycle of glacioeustatic change (Oxygen Isotope Stage 5e to present) in the uppermost 80 meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea meters of sediment on the slope at the New Jersey margin. Sediment availability, not sea level change, is thought to be the major factor controlling margin architecture during the late Pleistocene here at the upper slope. This is likely a function of the glacial scouring of the continents which significantly increases sediment availability during glacial stages. The subaerially exposed continental shelf during the lowstand periods would have been subject to significant amounts of erosion fi:om the proglacial rivers flowing fi-om the southern regions of the ice-sheet. The slope site is non-depositional today and was also non-depositional during the last full interglacial period. The palynomorph data obtained fi-om the South China Sea indicate that the major difference between the New Jersey Margin sites and the Sunda Shelf margin sites is the variation in sediment supply and the rate of sediment accumulation. There was significantly less variation in sediment supply between glacial and interglacial periods and less overall sediment accumulation at the Sunda Shelf margin. The data presented here indicate that under certain conditions the theoretical palynological models allow the identification of individual sequence stratigraphic units and therefore, allow inferences regarding continental margin architecture. The major condition required in this approach is that a complete and reliable database of the contemporaneous palynomorphs be available.
Resumo:
Department of Marine Geology and Geophysics,Cochin University of Science and Technology
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
As drenagens costeiras do leste do Brasil correspondem a áreas de grande significado biogeográfico, apresentando um alto grau de endemismo em sua fauna de peixes. Padrões filogenéticos sugerem uma relação próxima entre os rios que correm para o Atlântico a os adjacentes das terras altas do escudo cristalino. Entretanto, pouco tem sido dito sobre a dinâmica dos processos geológicos relacionados aos eventos cladogenéticos entre estas áreas. Padrões de distribuição e filogenéticos sugerem uma íntima associação com a história geológica da margem continental passiva da América do Sul, desde o Cretáceo aos dias atuais. Soerguimentos macrodômicos, rifteamento, movimentos verticais entre blocos falhados e o recuo erosivo da margem leste sul-americana são considerados como as principais forças geológicas atuando sobre a distribuição da ictiofauna de água doce nestas áreas. A atividade tectônica associada à ruptura do Gondwana e separação da América do Sul e África criou seis megadomos que são responsáveis por configurar a maior parte do atual curso das principais bacias hidrográficas do escudo cristalino. Com exceção das bacias localizadas às margens de tais megadomos, estes rios desenvolveram longos e sinuosos circuitos sobre o antigo escudo cristalino brasileiro antes de desaguarem no então recentemente aberto Oceano Atlântico. Eventos cladogenéticos iniciais entre drenagens de terras altas do escudo cristalino e tributários do Atlântico podem estar associados com processos vicariantes desta fase inicial, e alguns táxons antigos, basais, grupos-irmão de táxons muito inclusivos e de ampla distribuição são encontrados nestas bacias hidrográficas. Mais tarde, a denudação erosiva generalizada resultou em um ajuste isostático da margem leste da plataforma. Tal ajuste, concomitantemente a reativações de antigas zonas de falha, resultou em movimentos verticais entre blocos falhados, dando origem, no sudeste do Brasil, a bacias tafrogênicas. Tais bacias, como a de Taubaté, São Paulo, Curitiba e Volta Redonda, entre outras, capturaram drenagens e fauna de terras altas adjacentes. Os peixes fósseis da Formação Tremembé (Eoceno-Oligoceno da Bacia de Taubaté) exemplificam este processo. Outros sistemas tafrogênicos de idade Terciária foram também identificados em outros segmentos da margem continental Atlântica, como na Província Borborema, no NE do Brasil, com marcada influência sobre o padrão de drenagem. Ao mesmo tempo, o recuo erosivo da margem leste da plataforma capturou sucessivamente rios de planalto, os quais se tornaram tributários atlânticos, evoluindo associados aos principais sistemas de falha. A natureza continuada destes processos explica os padrões filogenéticos e de distribuição miscigenados entre os tributários atlânticos e as terras altas do escudo cristalino adjacente, especialmente na margem sudeste do continente, representados por sucessivos, cada vez menos inclusivos, grupos irmãos, associados a eventos cladogenéticos desde o final do Cretáceo ao presente.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Nezumia aequalis and Coelorinchus mediterraneus are abundant species on the upper and lower continental slopes, respectively, in the Mediterranean Sea. A study on the reproductive strategy of the two species was conducted on the Catalan margin (NW Mediterranean). The reproductive cycle of both species was investigated using visual analyses of gonads and histological screening. The shallower species, N. aequalis, showed continuous reproduction with a peak of spawning females in winter months. In contrast, the deeper-living species, C. mediterraneus, showed semi-continuous reproduction with a regression period during the spring. Juveniles of N. aequalis were present in all seasons, but most abundant in the spring. Only two juveniles of C. mediterraneus were found. Both species had asynchronous oocyte development. The average fecundity of N. aequalis was 10,630 oocytes per individual, lower than known for the same species in the Atlantic Ocean. The fecundity of C. mediterraneus was measured for the first time in this study, with an average of 7693 oocytes per individual. Males of both species appear to have semi-cystic spermatogenesis. © 2013 Elsevier Ltd.
Resumo:
The area between São Paulo and Porto Alegre in southeastern Brazil plays a key area to understand and quantify the evolution of the South Atlantic passive continental margin (SAPCM) in Brazil. In this contribution, we present new thermochronological data attained by fission-track and (U-Th-Sm)/He analysis on apatites and zircons from metamorphic, sedimentary and intrusive rocks. The zircon fission-track ages range between 108.4 (15.0) and 539.9 (68.4). Ma, the zircon (U-Th-Sm)/He ages between 72.9 (5.8) and 525.1(2.4). Ma, whereas the apatite fission-track ages range between 40.0 (5.3) and 134.7 (8.0). Ma, and the apatite (U-Th-Sm)/He ages between 32.1 (1.5) and 93.0 (2.5). Ma. The spatial distribution of these ages shows three distinct blocks with a different evolution cut by old fracture zones. While the central block exhibits an old stable block, the Northern and especially the Southern block underwent complex post-rift exhumation. The sample of the Northern block shows two distinct cooling phases in the Upper Cretaceous and the Paleogene to Neogene. After sedimentation of the Permian sandstones the samples of the Central block were never heated up over 100. °C with a following moderate to fast cooling phase in Cretaceous to Eocene time and a fast cooling between Oligocene to Miocene. The five thermal models obtained in the Southern block indicate a complex evolution with three cooling phases. The exhumation events of the three blocks correspond with the Paraná-Etendekka event, the alkaline intrusions due to the Trinidad hotspot, and the evolution of the continental rift basins in SE Brazil and are, therefore, most likely to be the major force for the post-rift evolution of the passive continental margin in SE Brazil, which therefore corresponds to the three main phases of the Andean orogeny. © 2013 Elsevier B.V.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Abundance and composition of marine benthic communities have been relatively well studied in the SE Brazilian coast, but little is known on patterns controlling the distribution of their planktonic larval stages. A survey of larval abundance in the continental margin, using a Multi-Plankton Sampler, was conducted in a cross-shelf transect off Cabo Frio (23 degrees S and 42 degrees W) during a costal upwelling event. Hydrographic conditions were monitored through discrete CDT casts. Chlorophyll-a in the top 100 m of the water column was determined and changes in surface chlorophyll-a was estimated using SeaWiFS images. Based on the larval abundances and the meso-scale hydrodynamics scenario, our results suggest two different processes affecting larval distributions. High larval densities were found nearshore due to the upwelling event associated with high chlorophyll a and strong along shore current. On the continental slope, high larval abundance was associated with a clockwise rotating meander, which may have entrapped larvae from a region located further north (Cabo de Sao Tome, 22 degrees S and 41 degrees W). In mid-shelf areas, our data suggests that vertical migration may likely occur as a response to avoid offshore transport by upwelling plumes and/or cyclonic meanders. The hydrodynamic scenario observed in the study area has two distinct yet extremely important consequences: larval retention on food-rich upwelling areas and the broadening of the tropical domain to southernmost subtropical areas. (C) 2009 Elsevier B.V. All rights reserved.