947 resultados para Context-aware computing
Resumo:
The construction industry has incurred a considerable amount of waste as a result of poor logistics supply chain network management. Therefore, managing logistics in the construction industry is critical. An effective logistic system ensures delivery of the right products and services to the right players at the right time while minimising costs and rewarding all sectors based on value added to the supply chain. This paper reports on an on-going research study on the concept of context-aware services delivery in the construction project supply chain logistics. As part of the emerging wireless technologies, an Intelligent Wireless Web (IWW) using context-aware computing capability represents the next generation ICT application to construction-logistics management. This intelligent system has the potential of serving and improving the construction logistics through access to context-specific data, information and services. Existing mobile communication deployments in the construction industry rely on static modes of information delivery and do not take into account the worker’s changing context and dynamic project conditions. The major problems in these applications are lack of context-specificity in the distribution of information, services and other project resources, and lack of cohesion with the existing desktop based ICT infrastructure. The research works focus on identifying the context dimension such as user context, environmental context and project context, selection of technologies to capture context-parameters such wireless sensors and RFID, selection of supporting technologies such as wireless communication, Semantic Web, Web Services, agents, etc. The process of integration of Context-Aware Computing and Web-Services to facilitate the creation of intelligent collaboration environment for managing construction logistics will take into account all the necessary critical parameters such as storage, transportation, distribution, assembly, etc. within off and on-site project.
Resumo:
Quest' ultimo ventennio ha visto una vera e propria rivoluzione dei dispositivi, partendo dal computer desktop, passando ai laptop fino ad arrivare agli smartphone. Oggi giorno invece si parla di computer indossabili, i dispositivi stanno diventando sempre più piccoli e integrati in oggetti di moda come possono essere degli orologi, occhiali e orecchini.Questi sono connessi in rete con migliaia di dispositivi e con computer più grandi, con i quali, gli utenti nel corso della giornata interagiscono continuamente senza nemmeno rendersene conto scambiandosi migliaia di piccole informazioni: quando si cammina per strada, in centro città quando si fanno compere, quando si è in casa a guardare la TV. Questo ha portato quindi alla nascita di una nuova tipologia di sistemi, in risposta ai cambiamenti portati da questa rivoluzione, i così detti "Sistemi Context-Aware".Il context di un utente può essere descritto come la relazione che vi è tra i suoi dispositivi elettronici, e l' ambiente che lo circonda, a seconda di dove si trova esso dovrà dare delle risposte opportune, e compiere quindi autonomamente certe azioni, tal volta ad insaputa dell' utente. Le applicazioni che usano quindi questo sistema, vengono continuamente messe a conoscenza dei cambiamenti che vengono apportati all' ambiente circostante, regolandosi e reagendo di conseguenza in autonomia. Ad esempio, il nostro dispositivo scopre tramite la rete, la presenza di un amico nelle vicinanze, mentre stiamo passeggiano per strada, allora potrebbe inviarci un messaggio mostrandoci chi è, e dove si trova, con il tragitto da percorrere per raggiungerlo. Le migliaia di informazioni che vengono quindi scambiate in rete andranno a creare “un ambiente intelligente”, con il quale gli utenti interagiscono inviando informazioni sul proprio conto, senza nemmeno accorgersene, in modo da avere una risposta personalizzata, da parte dell' ambiente.
Resumo:
A primary goal of context-aware systems is delivering the right information at the right place and right time to users in order to enable them to make effective decisions and improve their quality of life. There are three key requirements for achieving this goal: determining what information is relevant, personalizing it based on the users’ context (location, preferences, behavioral history etc.), and delivering it to them in a timely manner without an explicit request from them. These requirements create a paradigm that we term as “Proactive Context-aware Computing”. Most of the existing context-aware systems fulfill only a subset of these requirements. Many of these systems focus only on personalization of the requested information based on users’ current context. Moreover, they are often designed for specific domains. In addition, most of the existing systems are reactive - the users request for some information and the system delivers it to them. These systems are not proactive i.e. they cannot anticipate users’ intent and behavior and act proactively without an explicit request from them. In order to overcome these limitations, we need to conduct a deeper analysis and enhance our understanding of context-aware systems that are generic, universal, proactive and applicable to a wide variety of domains. To support this dissertation, we explore several directions. Clearly the most significant sources of information about users today are smartphones. A large amount of users’ context can be acquired through them and they can be used as an effective means to deliver information to users. In addition, social media such as Facebook, Flickr and Foursquare provide a rich and powerful platform to mine users’ interests, preferences and behavioral history. We employ the ubiquity of smartphones and the wealth of information available from social media to address the challenge of building proactive context-aware systems. We have implemented and evaluated a few approaches, including some as part of the Rover framework, to achieve the paradigm of Proactive Context-aware Computing. Rover is a context-aware research platform which has been evolving for the last 6 years. Since location is one of the most important context for users, we have developed ‘Locus’, an indoor localization, tracking and navigation system for multi-story buildings. Other important dimensions of users’ context include the activities that they are engaged in. To this end, we have developed ‘SenseMe’, a system that leverages the smartphone and its multiple sensors in order to perform multidimensional context and activity recognition for users. As part of the ‘SenseMe’ project, we also conducted an exploratory study of privacy, trust, risks and other concerns of users with smart phone based personal sensing systems and applications. To determine what information would be relevant to users’ situations, we have developed ‘TellMe’ - a system that employs a new, flexible and scalable approach based on Natural Language Processing techniques to perform bootstrapped discovery and ranking of relevant information in context-aware systems. In order to personalize the relevant information, we have also developed an algorithm and system for mining a broad range of users’ preferences from their social network profiles and activities. For recommending new information to the users based on their past behavior and context history (such as visited locations, activities and time), we have developed a recommender system and approach for performing multi-dimensional collaborative recommendations using tensor factorization. For timely delivery of personalized and relevant information, it is essential to anticipate and predict users’ behavior. To this end, we have developed a unified infrastructure, within the Rover framework, and implemented several novel approaches and algorithms that employ various contextual features and state of the art machine learning techniques for building diverse behavioral models of users. Examples of generated models include classifying users’ semantic places and mobility states, predicting their availability for accepting calls on smartphones and inferring their device charging behavior. Finally, to enable proactivity in context-aware systems, we have also developed a planning framework based on HTN planning. Together, these works provide a major push in the direction of proactive context-aware computing.
Resumo:
110 p.
Resumo:
This thesis deals with Context Aware Services, Smart Environments, Context Management and solutions for Devices and Service Interoperability. Multi-vendor devices offer an increasing number of services and end-user applications that base their value on the ability to exploit the information originating from the surrounding environment by means of an increasing number of embedded sensors, e.g. GPS, compass, RFID readers, cameras and so on. However, usually such devices are not able to exchange information because of the lack of a shared data storage and common information exchange methods. A large number of standards and domain specific building blocks are available and are heavily used in today's products. However, the use of these solutions based on ready-to-use modules is not without problems. The integration and cooperation of different kinds of modules can be daunting because of growing complexity and dependency. In this scenarios it might be interesting to have an infrastructure that makes the coexistence of multi-vendor devices easy, while enabling low cost development and smooth access to services. This sort of technologies glue should reduce both software and hardware integration costs by removing the trouble of interoperability. The result should also lead to faster and simplified design, development and, deployment of cross-domain applications. This thesis is mainly focused on SW architectures supporting context aware service providers especially on the following subjects: - user preferences service adaptation - context management - content management - information interoperability - multivendor device interoperability - communication and connectivity interoperability Experimental activities were carried out in several domains including Cultural Heritage, indoor and personal smart spaces – all of which are considered significant test-beds in Context Aware Computing. The work evolved within european and national projects: on the europen side, I carried out my research activity within EPOCH, the FP6 Network of Excellence on “Processing Open Cultural Heritage” and within SOFIA, a project of the ARTEMIS JU on embedded systems. I worked in cooperation with several international establishments, including the University of Kent, VTT (the Technical Reserarch Center of Finland) and Eurotech. On the national side I contributed to a one-to-one research contract between ARCES and Telecom Italia. The first part of the thesis is focused on problem statement and related work and addresses interoperability issues and related architecture components. The second part is focused on specific architectures and frameworks: - MobiComp: a context management framework that I used in cultural heritage applications - CAB: a context, preference and profile based application broker which I designed within EPOCH Network of Excellence - M3: "Semantic Web based" information sharing infrastructure for smart spaces designed by Nokia within the European project SOFIA - NoTa: a service and transport independent connectivity framework - OSGi: the well known Java based service support framework The final section is dedicated to the middleware, the tools and, the SW agents developed during my Doctorate time to support context-aware services in smart environments.
Resumo:
The immaturity of the field of context-aware computing means that little is known about how to incorporate appropriate personalisation mechanisms into context-aware applications. One of the main challenges is how to elicit and represent complex, context-dependent requirements, and then use the resulting representations within context-aware applications to support decision-making processes. In this paper, we characterise several approaches to personalisation of context-aware applications and introduce our research on personalisation using a novel preference model.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces a variety of software engineering challenges. In this paper, we address these challenges by proposing a set of conceptual models designed to support the software engineering process, including context modelling techniques, a preference model for representing context-dependent requirements, and two programming models. We also present a software infrastructure and software engineering process that can be used in conjunction with our models. Finally, we discuss a case study that demonstrates the strengths of our models and software engineering approach with respect to a set of software quality metrics.
Resumo:
There is growing interest in the use of context-awareness as a technique for developing pervasive computing applications that are flexible, adaptable, and capable of acting autonomously on behalf of users. However, context-awareness introduces various software engineering challenges, as well as privacy and usability concerns. In this paper, we present a conceptual framework and software infrastructure that together address known software engineering challenges, and enable further practical exploration of social and usability issues by facilitating the prototyping and fine-tuning of context-aware applications.
Resumo:
A major requirement for pervasive systems is to integrate context-awareness to support heterogeneous networks and device technologies and at the same time support application adaptations to suit user activities. However, current infrastructures for pervasive systems are based on centralized architectures which are focused on context support for service adaptations in response to changes in the computing environment or user mobility. In this paper, we propose a hierarchical architecture based on active nodes, which maximizes the computational capabilities of various nodes within the pervasive computing environment, while efficiently gathering and evaluating context information from the user's working environment. The migratable active node architecture employs various decision making processes for evaluating a rich set of context information in order to dynamically allocate active nodes in the working environment, perform application adaptations and predict user mobility. The active node also utilizes the Redundant Positioning System to accurately manage user's mobility. This paper demonstrates the active node capabilities through context-aware vertical handover applications.
Resumo:
The deployment of wireless communications coupled with the popularity of portable devices has led to significant research in the area of mobile data caching. Prior research has focused on the development of solutions that allow applications to run in wireless environments using proxy based techniques. Most of these approaches are semantic based and do not provide adequate support for representing the context of a user (i.e., the interpreted human intention.). Although the context may be treated implicitly it is still crucial to data management. In order to address this challenge this dissertation focuses on two characteristics: how to predict (i) the future location of the user and (ii) locations of the fetched data where the queried data item has valid answers. Using this approach, more complete information about the dynamics of an application environment is maintained. ^ The contribution of this dissertation is a novel data caching mechanism for pervasive computing environments that can adapt dynamically to a mobile user's context. In this dissertation, we design and develop a conceptual model and context aware protocols for wireless data caching management. Our replacement policy uses the validity of the data fetched from the server and the neighboring locations to decide which of the cache entries is less likely to be needed in the future, and therefore a good candidate for eviction when cache space is needed. The context aware driven prefetching algorithm exploits the query context to effectively guide the prefetching process. The query context is defined using a mobile user's movement pattern and requested information context. Numerical results and simulations show that the proposed prefetching and replacement policies significantly outperform conventional ones. ^ Anticipated applications of these solutions include biomedical engineering, tele-health, medical information systems and business. ^
Resumo:
This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the reusability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective, providing new features and enriching the mobile user’s experience through a broad scope of potential applications.
Resumo:
This dissertation studies the context-aware application with its proposed algorithms at client side. The required context-aware infrastructure is discussed in depth to illustrate that such an infrastructure collects the mobile user’s context information, registers service providers, derives mobile user’s current context, distributes user context among context-aware applications, and provides tailored services. The approach proposed tries to strike a balance between the context server and mobile devices. The context acquisition is centralized at the server to ensure the usability of context information among mobile devices, while context reasoning remains at the application level. Hence, a centralized context acquisition and distributed context reasoning are viewed as a better solution overall. The context-aware search application is designed and implemented at the server side. A new algorithm is proposed to take into consideration the user context profiles. By promoting feedback on the dynamics of the system, any prior user selection is now saved for further analysis such that it may contribute to help the results of a subsequent search. On the basis of these developments at the server side, various solutions are consequently provided at the client side. A proxy software-based component is set up for the purpose of data collection. This research endorses the belief that the proxy at the client side should contain the context reasoning component. Implementation of such a component provides credence to this belief in that the context applications are able to derive the user context profiles. Furthermore, a context cache scheme is implemented to manage the cache on the client device in order to minimize processing requirements and other resources (bandwidth, CPU cycle, power). Java and MySQL platforms are used to implement the proposed architecture and to test scenarios derived from user’s daily activities. To meet the practical demands required of a testing environment without the impositions of a heavy cost for establishing such a comprehensive infrastructure, a software simulation using a free Yahoo search API is provided as a means to evaluate the effectiveness of the design approach in a most realistic way. The integration of Yahoo search engine into the context-aware architecture design proves how context aware application can meet user demands for tailored services and products in and around the user’s environment. The test results show that the overall design is highly effective,providing new features and enriching the mobile user’s experience through a broad scope of potential applications.