991 resultados para Context-Filtering


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pendant la dernière décennie nous avons vu une transformation incroyable du monde de la musique qui est passé des cassettes et disques compacts à la musique numérique en ligne. Avec l'explosion de la musique numérique, nous avons besoin de systèmes de recommandation de musique pour choisir les chansons susceptibles d’être appréciés à partir de ces énormes bases de données en ligne ou personnelles. Actuellement, la plupart des systèmes de recommandation de musique utilisent l’algorithme de filtrage collaboratif ou celui du filtrage à base de contenu. Dans ce mémoire, nous proposons un algorithme hybride et original qui combine le filtrage collaboratif avec le filtrage basé sur étiquetage, amélioré par la technique de filtrage basée sur le contexte d’utilisation afin de produire de meilleures recommandations. Notre approche suppose que les préférences de l'utilisateur changent selon le contexte d'utilisation. Par exemple, un utilisateur écoute un genre de musique en conduisant vers son travail, un autre type en voyageant avec la famille en vacances, un autre pendant une soirée romantique ou aux fêtes. De plus, si la sélection a été générée pour plus d'un utilisateur (voyage en famille, fête) le système proposera des chansons en fonction des préférences de tous ces utilisateurs. L'objectif principal de notre système est de recommander à l'utilisateur de la musique à partir de sa collection personnelle ou à partir de la collection du système, les nouveautés et les prochains concerts. Un autre objectif de notre système sera de collecter des données provenant de sources extérieures, en s'appuyant sur des techniques de crawling et sur les flux RSS pour offrir des informations reliées à la musique tels que: les nouveautés, les prochains concerts, les paroles et les artistes similaires. Nous essayerons d’unifier des ensembles de données disponibles gratuitement sur le Web tels que les habitudes d’écoute de Last.fm, la base de données de la musique de MusicBrainz et les étiquettes des MusicStrands afin d'obtenir des identificateurs uniques pour les chansons, les albums et les artistes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Treating e-mail filtering as a binary text classification problem, researchers have applied several statistical learning algorithms to email corpora with promising results. This paper examines the performance of a Naive Bayes classifier using different approaches to feature selection and tokenization on different email corpora

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The stochastic filtering has been in general an estimation of indirectly observed states given observed data. This means that one is discussing conditional expected values as being one of the most accurate estimation, given the observations in the context of probability space. In my thesis, I have presented the theory of filtering using two different kind of observation process: the first one is a diffusion process which is discussed in the first chapter, while the third chapter introduces the latter which is a counting process. The majority of the fundamental results of the stochastic filtering is stated in form of interesting equations, such the unnormalized Zakai equation that leads to the Kushner-Stratonovich equation. The latter one which is known also by the normalized Zakai equation or equally by Fujisaki-Kallianpur-Kunita (FKK) equation, shows the divergence between the estimate using a diffusion process and a counting process. I have also introduced an example for the linear gaussian case, which is mainly the concept to build the so-called Kalman-Bucy filter. As the unnormalized and the normalized Zakai equations are in terms of the conditional distribution, a density of these distributions will be developed through these equations and stated by Kushner Theorem. However, Kushner Theorem has a form of a stochastic partial differential equation that needs to be verify in the sense of the existence and uniqueness of its solution, which is covered in the second chapter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose a principled algorithm for robust Bayesian filtering and smoothing in nonlinear stochastic dynamic systems when both the transition function and the measurement function are described by non-parametric Gaussian process (GP) models. GPs are gaining increasing importance in signal processing, machine learning, robotics, and control for representing unknown system functions by posterior probability distributions. This modern way of system identification is more robust than finding point estimates of a parametric function representation. Our principled filtering/smoothing approach for GP dynamic systems is based on analytic moment matching in the context of the forward-backward algorithm. Our numerical evaluations demonstrate the robustness of the proposed approach in situations where other state-of-the-art Gaussian filters and smoothers can fail. © 2011 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a typical shoeprint classification and retrieval system, the first step is to segment meaningful basic shapes and patterns in a noisy shoeprint image. This step has significant influence on shape descriptors and shoeprint indexing in the later stages. In this paper, we extend a recently developed denoising technique proposed by Buades, called non-local mean filtering, to give a more general model. In this model, the expected result of an operation on a pixel can be estimated by performing the same operation on all of its reference pixels in the same image. A working pixel’s reference pixels are those pixels whose neighbourhoods are similar to the working pixel’s neighbourhood. Similarity is based on the correlation between the local neighbourhoods of the working pixel and the reference pixel. We incorporate a special instance of this general case into thresholding a very noisy shoeprint image. Visual and quantitative comparisons with two benchmarking techniques, by Otsu and Kittler, are conducted in the last section, giving evidence of the effectiveness of our method for thresholding noisy shoeprint images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Automatic indexing and retrieval of digital data poses major challenges. The main problem arises from the ever increasing mass of digital media and the lack of efficient methods for indexing and retrieval of such data based on the semantic content rather than keywords. To enable intelligent web interactions, or even web filtering, we need to be capable of interpreting the information base in an intelligent manner. For a number of years research has been ongoing in the field of ontological engineering with the aim of using ontologies to add such (meta) knowledge to information. In this paper, we describe the architecture of a system (Dynamic REtrieval Analysis and semantic metadata Management (DREAM)) designed to automatically and intelligently index huge repositories of special effects video clips, based on their semantic content, using a network of scalable ontologies to enable intelligent retrieval. The DREAM Demonstrator has been evaluated as deployed in the film post-production phase to support the process of storage, indexing and retrieval of large data sets of special effects video clips as an exemplar application domain. This paper provides its performance and usability results and highlights the scope for future enhancements of the DREAM architecture which has proven successful in its first and possibly most challenging proving ground, namely film production, where it is already in routine use within our test bed Partners' creative processes. (C) 2009 Published by Elsevier B.V.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within a metacommunity, both environmental and spatial processes regulate variation in local community structure. The strength of these processes may vary depending on species traits (e.g., dispersal mode) or the characteristics of the regions studied (e.g., spatial extent, environmental heterogeneity). We studied the metacommunity structuring of three groups of stream macroinvertebrates differing in their overland dispersal mode (passive dispersers with aquatic adults; passive dispersers with terrestrial adults; active dispersers with terrestrial adults). We predicted that environmental structuring should be more important for active dispersers, because of their better ability to track environmental variability, and that spatial structuring should be more important for species with aquatic adults, because of stronger dispersal limitation. We sampled a total of 70 stream riffle sites in three drainage basins. Environmental heterogeneity was unrelated to spatial extent among our study regions, allowing us to examine the effects of these two factors on metacommunity structuring. We used partial redundancy analysis and Moran's eigenvector maps based on overland and watercourse distances to study the relative importance of environmental control and spatial structuring. We found that, compared with environmental control, spatial structuring was generally negligible, and it did not vary according to our predictions. In general, active dispersers with terrestrial adults showed stronger environmental control than the two passively dispersing groups, suggesting that the species dispersing actively are better able to track environmental variability. There were no clear differences in the results based on watercourse and overland distances. The variability in metacommunity structuring among basins was not related to the differences in the environmental heterogeneity and spatial extent. Our study emphasized that (1) environmental control is prevailing in stream metacommunities, (2) dispersal mode may have an important effect on metacommunity structuring, and (3) some factors other than spatial extent or environmental heterogeneity contributed to the differences among the basins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Theory on plant succession predicts a temporal increase in the complexity of spatial community structure and of competitive interactions: initially random occurrences of early colonising species shift towards spatially and competitively structured plant associations in later successional stages. Here we use long-term data on early plant succession in a German post mining area to disentangle the importance of random colonisation, habitat filtering, and competition on the temporal and spatial development of plant community structure. We used species co-occurrence analysis and a recently developed method for assessing competitive strength and hierarchies (transitive versus intransitive competitive orders) in multispecies communities. We found that species turnover decreased through time within interaction neighbourhoods, but increased through time outside interaction neighbourhoods. Successional change did not lead to modular community structure. After accounting for species richness effects, the strength of competitive interactions and the proportion of transitive competitive hierarchies increased through time. Although effects of habitat filtering were weak, random colonization and subsequent competitive interactions had strong effects on community structure. Because competitive strength and transitivity were poorly correlated with soil characteristics, there was little evidence for context dependent competitive strength associated with intransitive competitive hierarchies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Idea Management Systems are web applications that implement the notion of open innovation though crowdsourcing. Typically, organizations use those kind of systems to connect to large communities in order to gather ideas for improvement of products or services. Originating from simple suggestion boxes, Idea Management Systems advanced beyond collecting ideas and aspire to be a knowledge management solution capable to select best ideas via collaborative as well as expert assessment methods. In practice, however, the contemporary systems still face a number of problems usually related to information overflow and recognizing questionable quality of submissions with reasonable time and effort allocation. This thesis focuses on idea assessment problem area and contributes a number of solutions that allow to filter, compare and evaluate ideas submitted into an Idea Management System. With respect to Idea Management System interoperability the thesis proposes theoretical model of Idea Life Cycle and formalizes it as the Gi2MO ontology which enables to go beyond the boundaries of a single system to compare and assess innovation in an organization wide or market wide context. Furthermore, based on the ontology, the thesis builds a number of solutions for improving idea assessment via: community opinion analysis (MARL), annotation of idea characteristics (Gi2MO Types) and study of idea relationships (Gi2MO Links). The main achievements of the thesis are: application of theoretical innovation models for practice of Idea Management to successfully recognize the differentiation between communities, opinion metrics and their recognition as a new tool for idea assessment, discovery of new relationship types between ideas and their impact on idea clustering. Finally, the thesis outcome is establishment of Gi2MO Project that serves as an incubator for Idea Management solutions and mature open-source software alternatives for the widely available commercial suites. From the academic point of view the project delivers resources to undertake experiments in the Idea Management Systems area and managed to become a forum that gathered a number of academic and industrial partners. Resumen Los Sistemas de Gestión de Ideas son aplicaciones Web que implementan el concepto de innovación abierta con técnicas de crowdsourcing. Típicamente, las organizaciones utilizan ese tipo de sistemas para conectar con comunidades grandes y así recoger ideas sobre cómo mejorar productos o servicios. Los Sistemas de Gestión de Ideas lian avanzado más allá de recoger simplemente ideas de buzones de sugerencias y ahora aspiran ser una solución de gestión de conocimiento capaz de seleccionar las mejores ideas por medio de técnicas colaborativas, así como métodos de evaluación llevados a cabo por expertos. Sin embargo, en la práctica, los sistemas contemporáneos todavía se enfrentan a una serie de problemas, que, por lo general, están relacionados con la sobrecarga de información y el reconocimiento de las ideas de dudosa calidad con la asignación de un tiempo y un esfuerzo razonables. Esta tesis se centra en el área de la evaluación de ideas y aporta una serie de soluciones que permiten filtrar, comparar y evaluar las ideas publicadas en un Sistema de Gestión de Ideas. Con respecto a la interoperabilidad de los Sistemas de Gestión de Ideas, la tesis propone un modelo teórico del Ciclo de Vida de la Idea y lo formaliza como la ontología Gi2MO que permite ir más allá de los límites de un sistema único para comparar y evaluar la innovación en un contexto amplio dentro de cualquier organización o mercado. Por otra parte, basado en la ontología, la tesis desarrolla una serie de soluciones para mejorar la evaluación de las ideas a través de: análisis de las opiniones de la comunidad (MARL), la anotación de las características de las ideas (Gi2MO Types) y el estudio de las relaciones de las ideas (Gi2MO Links). Los logros principales de la tesis son: la aplicación de los modelos teóricos de innovación para la práctica de Sistemas de Gestión de Ideas para reconocer las diferenciasentre comu¬nidades, métricas de opiniones de comunidad y su reconocimiento como una nueva herramienta para la evaluación de ideas, el descubrimiento de nuevos tipos de relaciones entre ideas y su impacto en la agrupación de estas. Por último, el resultado de tesis es el establecimiento de proyecto Gi2MO que sirve como incubadora de soluciones para Gestión de Ideas y herramientas de código abierto ya maduras como alternativas a otros sistemas comerciales. Desde el punto de vista académico, el proyecto ha provisto de recursos a ciertos experimentos en el área de Sistemas de Gestión de Ideas y logró convertirse en un foro que reunión para un número de socios tanto académicos como industriales.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Los sistemas de recomendación son potentes herramientas de filtrado de información que permiten a usuarios solicitar sugerencias sobre ítems que cubran sus necesidades. Tradicionalmente estas recomendaciones han estado basadas en opiniones de los mismos, así como en datos obtenidos de su consumo histórico o comportamiento en el propio sistema. Sin embargo, debido a la gran penetración y uso de los dispositivos móviles en nuestra sociedad, han surgido nuevas oportunidades en el campo de los sistemas de recomendación móviles gracias a la información contextual que se puede obtener sobre la localización o actividad de los usuarios. Debido a este estilo de vida en el que todo tiende a la movilidad y donde los usuarios están plenamente interconectados, la información contextual no sólo es física, sino que también adquiere una dimensión social. Todo esto ha dado lugar a una nueva área de investigación relacionada con los Sistemas de Recomendación Basados en Contexto (CARS) móviles donde se busca incrementar el nivel de personalización de las recomendaciones al usar dicha información. Por otro lado, este nuevo escenario en el que los usuarios llevan en todo momento un terminal móvil consigo abre la puerta a nuevas formas de recomendar. Sustituir el tradicional patrón de uso basado en petición-respuesta para evolucionar hacia un sistema proactivo es ahora posible. Estos sistemas deben identificar el momento más adecuado para generar una recomendación sin una petición explícita del usuario, siendo para ello necesario analizar su contexto. Esta tesis doctoral propone un conjunto de modelos, algoritmos y métodos orientados a incorporar proactividad en CARS móviles, a la vez que se estudia el impacto que este tipo de recomendaciones tienen en la experiencia de usuario con el fin de extraer importantes conclusiones sobre "qué", "cuándo" y "cómo" se debe notificar proactivamente. Con este propósito, se comienza planteando una arquitectura general para construir CARS móviles en escenarios sociales. Adicionalmente, se propone una nueva forma de representar el proceso de recomendación a través de una interfaz REST, lo que permite crear una arquitectura independiente de dispositivo y plataforma. Los detalles de su implementación tras su puesta en marcha en el entorno bancario español permiten asimismo validar el sistema construido. Tras esto se presenta un novedoso modelo para incorporar proactividad en CARS móviles. Éste muestra las ideas principales que permiten analizar una situación para decidir cuándo es apropiada una recomendación proactiva. Para ello se presentan algoritmos que establecen relaciones entre lo propicia que es una situación y cómo esto influye en los elementos a recomendar. Asimismo, para demostrar la viabilidad de este modelo se describe su aplicación a un escenario de recomendación para herramientas de creación de contenidos educativos. Siguiendo el modelo anterior, se presenta el diseño e implementación de nuevos interfaces móviles de usuario para recomendaciones proactivas, así como los resultados de su evaluación entre usuarios, lo que aportó importantes conclusiones para identificar cuáles son los factores más relevantes a considerar en el diseño de sistemas proactivos. A raíz de los resultados anteriores, el último punto de esta tesis presenta una metodología para calcular cuán apropiada es una situación de cara a recomendar de manera proactiva siguiendo el modelo propuesto. Como conclusión, se describe la validación llevada a cabo tras la aplicación de la arquitectura, modelo de recomendación y métodos descritos en este trabajo en una red social de aprendizaje europea. Finalmente, esta tesis discute las conclusiones obtenidas a lo largo de la extensa investigación llevada a cabo, y que ha propiciado la consecución de una buena base teórica y práctica para la creación de sistemas de recomendación móviles proactivos basados en información contextual. ABSTRACT Recommender systems are powerful information filtering tools which offer users personalized suggestions about items whose aim is to satisfy their needs. Traditionally the information used to make recommendations has been based on users’ ratings or data on the item’s consumption history and transactions carried out in the system. However, due to the remarkable growth in mobile devices in our society, new opportunities have arisen to improve these systems by implementing them in ubiquitous environments which provide rich context-awareness information on their location or current activity. Because of this current all-mobile lifestyle, users are socially connected permanently, which allows their context to be enhanced not only with physical information, but also with a social dimension. As a result of these novel contextual data sources, the advent of mobile Context-Aware Recommender Systems (CARS) as a research area has appeared to improve the level of personalization in recommendation. On the other hand, this new scenario in which users have their mobile devices with them all the time offers the possibility of looking into new ways of making recommendations. Evolving the traditional user request-response pattern to a proactive approach is now possible as a result of this rich contextual scenario. Thus, the key idea is that recommendations are made to the user when the current situation is appropriate, attending to the available contextual information without an explicit user request being necessary. This dissertation proposes a set of models, algorithms and methods to incorporate proactivity into mobile CARS, while the impact of proactivity is studied in terms of user experience to extract significant outcomes as to "what", "when" and "how" proactive recommendations have to be notified to users. To this end, the development of this dissertation starts from the proposal of a general architecture for building mobile CARS in scenarios with rich social data along with a new way of managing a recommendation process through a REST interface to make this architecture multi-device and cross-platform compatible. Details as regards its implementation and evaluation in a Spanish banking scenario are provided to validate its usefulness and user acceptance. After that, a novel model is presented for proactivity in mobile CARS which shows the key ideas related to decide when a situation warrants a proactive recommendation by establishing algorithms that represent the relationship between the appropriateness of a situation and the suitability of the candidate items to be recommended. A validation of these ideas in the area of e-learning authoring tools is also presented. Following the previous model, this dissertation presents the design and implementation of new mobile user interfaces for proactive notifications. The results of an evaluation among users testing these novel interfaces is also shown to study the impact of proactivity in the user experience of mobile CARS, while significant factors associated to proactivity are also identified. The last stage of this dissertation merges the previous outcomes to design a new methodology to calculate the appropriateness of a situation so as to incorporate proactivity into mobile CARS. Additionally, this work provides details about its validation in a European e-learning social network in which the whole architecture and proactive recommendation model together with its methods have been implemented. Finally, this dissertation opens up a discussion about the conclusions obtained throughout this research, resulting in useful information from the different design and implementation stages of proactive mobile CARS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although context could be exploited to improve performance, elasticity and adaptation in most distributed systems that adopt the publish/subscribe (P/S) communication model, only a few researchers have focused on the area of context-aware matching in P/S systems and have explored its implications in domains with highly dynamic context like wireless sensor networks (WSNs) and IoT-enabled applications. Most adopted P/S models are context agnostic or do not differentiate context from the other application data. In this article, we present a novel context-aware P/S model. SilboPS manages context explicitly, focusing on the minimization of network overhead in domains with recurrent context changes related, for example, to mobile ad hoc networks (MANETs). Our approach represents a solution that helps to efficiently share and use sensor data coming from ubiquitous WSNs across a plethora of applications intent on using these data to build context awareness. Specifically, we empirically demonstrate that decoupling a subscription from the changing context in which it is produced and leveraging contextual scoping in the filtering process notably reduces (un)subscription cost per node, while improving the global performance/throughput of the network of brokers without fltering the cost of SIENA-like topology changes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this letter, a new approach for crop phenology estimation with remote sensing is presented. The proposed methodology is aimed to exploit tools from a dynamical system context. From a temporal sequence of images, a geometrical model is derived, which allows us to translate this temporal domain into the estimation problem. The evolution model in state space is obtained through dimensional reduction by a principal component analysis, defining the state variables, of the observations. Then, estimation is achieved by combining the generated model with actual samples in an optimal way using a Kalman filter. As a proof of concept, an example with results obtained with this approach over rice fields by exploiting stacks of TerraSAR-X dual polarization images is shown.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sentiment classification over Twitter is usually affected by the noisy nature (abbreviations, irregular forms) of tweets data. A popular procedure to reduce the noise of textual data is to remove stopwords by using pre-compiled stopword lists or more sophisticated methods for dynamic stopword identification. However, the effectiveness of removing stopwords in the context of Twitter sentiment classification has been debated in the last few years. In this paper we investigate whether removing stopwords helps or hampers the effectiveness of Twitter sentiment classification methods. To this end, we apply six different stopword identification methods to Twitter data from six different datasets and observe how removing stopwords affects two well-known supervised sentiment classification methods. We assess the impact of removing stopwords by observing fluctuations on the level of data sparsity, the size of the classifier's feature space and its classification performance. Our results show that using pre-compiled lists of stopwords negatively impacts the performance of Twitter sentiment classification approaches. On the other hand, the dynamic generation of stopword lists, by removing those infrequent terms appearing only once in the corpus, appears to be the optimal method to maintaining a high classification performance while reducing the data sparsity and substantially shrinking the feature space