985 resultados para Contact force sensing
Resumo:
Contact force (CF) sensing technology allows real-time monitoring during catheter ablation for atrial fibrillation (AF). However, the effect of CF sensing technology on procedural parameters and clinical outcomes still needs clarification. Because of the inconsistent results thus far in this area, we performed a meta-analysis to determine whether CF sensing technology can improve procedural parameters and clinical outcomes for the treatment of AF. Studies examining the benefits of CF sensing technology were identified in English-language articles by searching the MEDLINE, Web of Science, and Cochrane Library databases (inception to May 2015). Ten randomized, controlled trials involving 1834 patients (1263 males, 571 females) were included in the meta-analysis (681 in the CF group, 1153 in the control group). Overall, the ablation time was significantly decreased by 7.34 min (95%CI=-12.21 to -2.46; P=0.003, Z test) in the CF group compared with the control group. CF sensing technology was associated with significantly improved freedom from AF after 12 months (OR=1.55, 95%CI=1.20 to 1.99; P=0.0007) and complications were significantly lower in the CF group than in the control group (OR=0.50, 95%CI=0.29 to 0.87; P=0.01). However, fluoroscopy time analysis showed no significantly decreased trend associated with CF-guided catheter ablation (weighted mean difference: -2.59; 95%CI=-9.06 to 3.88; P=0.43). The present meta-analysis shows improvement in ablation time and freedom from AF after 12 months in AF patients treated with CF-guided catheter ablation. However, CF-guided catheter ablation does not decrease fluoroscopy time.
Resumo:
Ligament balancing in total knee arthroplasty may have an important influence on joint stability and prosthesis lifetime. In order to provide quantitative information and assistance during ligament balancing, a device that intraoperatively measures knee joint forces and moments was developed. Its performance and surgical advantages were evaluated on six cadaver specimens mounted on a knee joint loading apparatus allowing unconstrained knee motion as well as compression and varus-valgus loading. Four different experiments were performed on each specimen. (1) Knee joints were axially loaded. Comparison between applied and measured compressive forces demonstrated the accuracy and reliability of in situ measurements (1.8N). (2) Assessment of knee stability based on condyle contact forces or varus-valgus moments were compared to the current surgical method (difference of varus-valgus loads causing condyle lift-off). The force-based approach was equivalent to the surgical method while the moment-based, which is considered optimal, showed a tendency of lateral imbalance. (3) To estimate the importance of keeping the patella in its anatomical position during imbalance assessment, the effect of patellar eversion on the mediolateral distribution of tibiofemoral contact forces was measured. One fourth of the contact force induced by the patellar load was shifted to the lateral compartment. (4) The effect of minor and major medial collateral ligament releases was biomechanically quantified. On average, the medial contact force was reduced by 20% and 46%, respectively. Large variation among specimens reflected the difficulty of ligament release and the need for intraoperative force monitoring. This series of experiments thus demonstrated the device's potential to improve ligament balancing and survivorship of total knee arthroplasty.
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
"Series: Solid mechanics and its applications, vol. 226"
Resumo:
The success of anatomic repair of Bankart lesion diminishes in the presence of a capsule stretching and/or attenuation is reported in a variable percentage of patients with a chronic gleno-humeral instability. We introduce a new arthroscopic stitch, the MIBA stitch, designed with a twofold aim: to improve tissue grip to reduce the risk of soft tissue tear, particularly cutting through capsular-labral tissue, to and address capsule-labral detachment and capsular attenuation using a double loaded suture anchor. This stitch is a combination of horizontal mattress stitch passing through the capsular-labral complex in a "south-to-north" direction and an overlapping single vertical suture passing through the capsule and labrum in a "east-to-west" direction. The mattress stitch is tied before the vertical stitch in order to reinforce the simple vertical stitch, improving grip and contact force between capsular-labral tissue and glenoid bone.
Resumo:
This paper presents a simple and fast solution to the problem of finding the time variations of the forces that keep the object equilibrium when a finger is removed from a three contact point grasp or a finger is added to a two contact point grasp, assuming the existence of an external perturbation force (that can be the object weight itself). The procedure returns force set points for the control system of a manipulator device in a regrasping action. The approach was implemented and a numerical example is included in the paper to illustrate how it works.
Resumo:
This paper describes a technique for extending the force range of thin conductive polymer force sensors used for measuring contact force. These sensors are conventionally used for measuring force by changing electrical resistance when they are compressed. The new method involves measuring change in electrical resistance when the flexible sensor, which is sensitive to both compression and bending, is sandwiched between two layers of spring steel, and the structure is supported on a thin metal ring. When external force is applied, the stiffened sensor inside the spring steel is deformed within the annular center of the ring, causing the sensor to bend in proportion to the applied force. This method effectively increases the usable force range, while adding little in the way of thickness and weight. Average error for loads between 10 N and 100 N was 2.2 N (SD = 1.7) for a conventional conductive polymer sensor, and 0.9 N (SD = 0.4) using the new approach. Although this method permits measurement of greater loads with an error less than 1 N, it is limited since the modified sensor is insensitive to loads less than 5 N. These modified sensors are nevertheless useful for directly measuring normal force applied against handles and tools and other situations involving forceful manual work activities, such as grasp, push, pull, or press that could not otherwise be measured in actual work situations.
Resumo:
BACKGROUND Contact force (CF) is an important determinant of lesion formation for atrial endocardial radiofrequency ablation. There are minimal published data on CF and ventricular lesion formation. We studied the impact of CF on lesion formation using an ovine model both endocardially and epicardially. METHODS AND RESULTS Twenty sheep received 160 epicardial and 160 endocardial ventricular radiofrequency applications using either a 3.5-mm irrigated-tip catheter (Thermocool, Biosense-Webster, n=160) or a 3.5 irrigated-tip catheter with CF assessment (Tacticath, Endosense, n=160), via percutaneous access. Power was delivered at 30 watts for 60 seconds, when either catheter/tissue contact was felt to be good or when CF>10 g with Tacticath. After completion of all lesions, acute dimensions were taken at pathology. Identifiable lesion formation from radiofrequency application was improved with the aid of CF information, from 78% to 98% on the endocardium (P<0.001) and from 90% to 100% on the epicardium (P=0.02). The mean total force was greater on the endocardium (39±18 g versus 21±14 g for the epicardium; P<0.001) mainly because of axial force. Despite the force-time integral being greater endocardially, epicardial lesions were larger (231±182 mm(3) versus 209±131 mm(3); P=0.02) probably because of the absence of the heat sink effect of the circulating blood and covered a greater area (41±27 mm(2) versus 29±17 mm(2); P=0.03) because of catheter orientation. CONCLUSIONS In the absence of CF feedback, 22% of endocardial radiofrequency applications that are thought to have good contact did not result in lesion formation. Epicardial ablation is associated with larger lesions.
Resumo:
Intraoral devices for bite-force sensing have several applications in odontology and maxillofacial surgery, as bite-force measurements provide additional information to help understand the characteristics of bruxism disorders and can also be of help for the evaluation of post-surgical evolution and for comparison of alternative treatments. A new system for measuring human bite forces is proposed in this work. This system has future applications for the monitoring of bruxism events and as a complement for its conventional diagnosis. Bruxism is a pathology consisting of grinding or tight clenching of the upper and lower teeth, which leads to several problems such as lesions to the teeth, headaches, orofacial pain and important disorders of the temporomandibular joint. The prototype uses a magnetic field communication scheme similar to low-frequency radio frequency identification (RFID) technology (NFC). The reader generates a low-frequency magnetic field that is used as the information carrier and powers the sensor. The system is notable because it uses an intra-mouth passive sensor and an external interrogator, which remotely records and processes information regarding a patient?s dental activity. This permits a quantitative assessment of bite-force, without requiring intra-mouth batteries, and can provide supplementary information to polysomnographic recordings, current most adequate early diagnostic method, so as to initiate corrective actions before irreversible dental wear appears. In addition to describing the system?s operational principles and the manufacture of personalized prototypes, this report will also demonstrate the feasibility of the system and results from the first in vitro and in vivo trials.
Resumo:
The research developed in this thesis explores the sensing and inference of human movement in a dynamic way, as opposed to conventional measurement systems, that are only concerned with discrete evaluations of stimuli in sequential time. Typically, conventional approaches are used to infer the dynamic movement of the body; such as vision and motion tracking devices, with either a human diagnosis or complex image processing algorithm to classify the movement. This research is therefore the first of its kind to attempt and provide a movement classifying algorithm through the use of minimal sensing points, with the application for this novel system, to classify human movement during a golf swing. There are two main categories of force sensing. Firstly, array-type systems consisting of many sensing elements, and are the most commonly researched and commercially available. Secondly, reduced force sensing element systems (RFSES) also known as distributive systems have only been recently exploited in the academic world. The fundamental difference between these systems is that array systems handle the data captured from each sensor as unique outputs and suffer the effects of resolution. The effect of resolution, is the error in the load position measurement between sensing elements, as the output is quantized in terms of position. This can be compared to a reduced sensor element system that maximises that data received through the coupling of data from a distribution of sensing points to describe the output in discrete time. Also this can be extended to a coupling of transients in the time domain to describe an activity or dynamic movement. It is the RFSES that is to be examined and exploited in the commercial sector due to its advantages over array-based approaches such as reduced design, computational complexity and cost.
Resumo:
We extract the distribution of both center-of-mass and angular fluctuations from three-dimensional tracking of optically trapped nanotubes. We measure the optical force and torque constants from autocorrelation and cross-correlation of the tracking signals. This allows us to isolate the angular Brownian motion. We demonstrate that nanotubes enable nanometer spatial and femtonewton force resolution in photonic force microscopy, the smallest to date. This has wide implications in nanotechnology, biotechnology, nanofluidics, and material science.
Resumo:
Bragg gratings photo-inscribed in polymer optical fibers (POFs) are more sensitive to temperature and pressure than their silica counterparts, because of their larger thermo-optic coefficient and smaller Young's modulus. Polymer optical fiber Bragg gratings (POFBGs) are most often photo-written in poly(methylmethacrylate) (PMMA) based materials using a continuous-wave 325 nm HeCd laser. In this work, we present the first study about birefringence effects in POFBGs manufactured in different types of fiber. To achieve this, highly reflective (> 90%) gratings were produced with the phase mask technique. Their spectral response was then monitored in transmission with polarized light. Polarization dependent loss (PDL) and differential group delay (DGD) were computed from the Jones matrix eigenanalysis using an optical vector analyzer. Maximum values exceeding several dB and a few picoseconds were obtained for the PDL and DGD, respectively. An inverse scattering technique applied to the experimental data provided an estimate of the photo-induced birefringence value arising from the side fabrication process. The response to lateral force was finally investigated for various incident directions using the PDL response of FBGs manufactured in step-index POFs. As the force induced birefringence adds to the photo-induced one, a force dependent evolution of the PDL maximum value was noticed, with a good temperature-insensitivity.