892 resultados para Construction and demolition waste
Resumo:
Construction and demolition (C&D) waste occupies the largest share of overall waste generation in many countries. However, waste management practices and outcomes may differ between countries. For instance, in Australia, C&D waste recovery is continuously improving during the last years but the amount of C&D waste increases every year, as there has been little improvement in waste avoidance and minimization. In contrast, in Germany, waste generation remains constant over many years despite the continuous economic growth. The waste recycling rate in Germany is one of the highest in the world. However, most waste recycled is from demolition work rather than from waste generated during new construction. In addition, specific laws need to be developed to further reduce landfill of non-recycled waste. Despite of the differences, C&D waste generation and recovery in both countries depend on the effectiveness of the statutory framework, which regulates their waste management practices. This is an issue in other parts of the world as well. Therefore countries can learn from each other to improve their current statutory framework for C&D waste management. By taking Germany and Australia as an example, possible measures to improve current practices of C&D waste management through better statutory tools are identified in this paper. After providing an overview of the statutory framework of both countries and their status in waste generation and recovery, a SWOT analysis is conducted to identify strengths, weaknesses, opportunities and threats of the statutory tools. Recommendations to improve the current statutory frameworks, in order to achieve less waste generation and more waste recovery in the construction industry are provided for the German and Australian government and they can also be transferred to other countries.
Precast Concrete Building Blocks Made With Aggregates Derived From Construction And Demolition Waste
Resumo:
This article introduces a quantitative approach to e-commerce system evaluation based on the theory of process simulation. The general concept of e-commerce system simulation is presented based on the considerations of some limitations in e-commerce system development such as the huge amount of initial investments of time and money, and the long period from business planning to system development, then to system test and operation, and finally to exact return; in other words, currently used system analysis and development method cannot tell investors about some keen attentions such as how good their e-commerce system could be, how many investment repayments they could have, and which area they should improve regarding the initial business plan. In order to exam the value and its potential effects of an e-commerce business plan, it is necessary to use a quantitative evaluation approach and the authors of this article believe that process simulation is an appropriate option. The overall objective of this article is to apply the theory of process simulation to e-commerce system evaluation, and the authors will achieve this though an experimental study on a business plan for online construction and demolition waste exchange. The methodologies adopted in this article include literature review, system analysis and development, simulation modelling and analysis, and case study. The results from this article include the concept of e-commerce system simulation, a comprehensive review of simulation methods adopted in e-commerce system evaluation, and a real case study of applying simulation to e-commerce system evaluation. Furthermore, the authors hope that the adoption and implementation of the process simulation approach can effectively support business decision-making, and improve the efficiency of e-commerce systems.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to verify the influence of composition variability of recycled aggregates (RA) of construction and demolition wastes (CDW) on the performance of concretes. Performance was evaluated building mathematical models for compressive strength, modulus of elasticity and drying shrinkage. To obtain such models, an experimental program comprising 50 concrete mixtures was carried out. Specimens were casted, tested and results for compressive strength, modulus of elasticity and drying shrinkage were statistically analyzed. Models inputs are CDW composition observed at seven Brazilian cities. Results confirm that using RA from CDW for concrete building is quite feasible, independently of its composition, once compressive strength and modulus of elasticity still reached considerable values. We concluded the variability presented by recycled aggregates of CDW does not compromise their use for concrete building. However, this information must be used with caution, and experimental tests should always be performed to certify concrete properties.
Resumo:
The intense activity in the construction sector during the last decade has generated huge volumes of construction and demolition (C&D) waste. In average, Europe has generated around 890 million tonnes of construction and demolition waste per year. Although now the activity has entered in a phase of decline, due to the change of the economic cycle, we don’t have to forget all the problems caused by such waste, or rather, by their management which is still far from achieving the overall target of 70% for C&D waste --excludes soil and stones not containing dangerous substances-- should be recycled in the EU Countries by 2020 (Waste Framework Directive). But in fact, the reality is that only 50% of the C&D waste generated in EU is recycled and 40% of it corresponds to the recycling of soil and stones not containing dangerous substances. Aware of this situation, the European Countries are implementing national policies as well as different measures to prevent the waste that can be avoidable and to promote measures to increase recycling and recovering. In this aspect, this article gives an overview of the amount of C&D waste generated in European countries, as well as the amount of this waste that is being recycled and the different measures that European countries have applied to solve this situation.
Resumo:
The construction industry, one of the most important ones in the development of a country, generates unavoidable impacts on the environment. The social demand towards greater respect for the environment is a high and general outcry. Therefore, the construction industry needs to reduce the impact it produces. Proper waste management is not enough; we must take a further step in environmental management, where new measures need to be introduced for the prevention at source, such as good practices to promote recycling. Following the amendment of the legal frame applicable to Construction and Demolition Waste (C&D waste), important developments have been incorporated in European and International laws, aiming to promote the culture of reusing and recycling. This change of mindset, that is progressively taking place in society, is allowing for the consideration of C&D waste no longer as an unusable waste, but as a reusable material. The main objective of the work presented in this paper is to enhance C&D waste management systems through the development of preventive measures during the construction process. These measures concern all the agents intervening in the construction process as only the personal implication of all of them can ensure an efficient management of the C&D waste generated. Finally, a model based on preventive measures achieves organizational cohesion between the different stages of the construction process, as well as promoting the conservation of raw materials through the use and waste minimization. All of these in order to achieve a C&D waste management system, whose primary goal is zero waste generation
Resumo:
The main objective of this research is to study the feasibility of recycling fibres from construction and demolition waste (C&DW) as an alternative material to chopped glass fibres which are used today as reinforcing elements in the prefabricated plaster. To do this, sets of samples are made with rockwool and different percentages of combinations between water / plaster. These series are repeated by changing the additive E glass fibre length of 25mm to make a comparative analysis with respect to the series infused with rockwool.
Resumo:
The use of mineral wool is becoming more widespread due to increased acoustic and thermal demands of Spanish Technical Building Code. This increase affects both in rehabilitation and new construction projects. Therefore, waste generation of this type of insulating material is having more importance. The main objective of this research is to study the possibility of recycling fiber obtained from mineral wool of the C&DW as an alternative material to chopped glass fibers that are currently used as reinforcing elements in the prefabricated plaster. To achieve this objective, series are made of plaster E-35 additived with rock wool residue and glass wool residue at different rates of addition. These series are repeated by changing the additive by E fiberglass (length of 25mm) to make a comparative analysis with respect to the series additived with mineral wool waste. All the series are subjected to the test to determine Shore C surface hardness and mechanical testing to determine the compressive and flexural strength. From the results it can be concluded that: with rock wool residue, increases Shore C hardness up to 15% with respect to the glass fiber and 9% with respect to the glass wool, with a percentage of addition 2%. With rock wool residue, weight is decreased by 5% with respect to the glass fiber and 4% with respect to the glass wool waste, with an addition percentage of 4%. For an addition rate of 4%, results in the flexural strength test with fiberglass are 85% higher than those obtained with glass wool residue. However, for a percentage of 1% addition, the results obtained with glass wool residue are 35% higher than those obtained with fiberglass. For an addition rate of 3% results in the compressive strength test with fiberglass are 54% lower than those obtained with rock wool waste and 70% lower than those obtained with glass wool waste. Comparing the two mineral wools, it can be concluded that up to 3% of the addition, the glass wool series results obtained are 10% higher than those additived with rock wool. However, higher percentages of addition show that the results obtained with rock wool are 35% higher than those obtained with glass wool. The general conclusion is that the series additived with mineral wool from C&DW show better results in tests than the ones used nowadays as plaster reinforcement.