998 resultados para Conservation law
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Numerical solutions of the sediment conservation law are reviewed in terms of their application to bed update schemes in coastal morphological models. It is demonstrated that inadequately formulated numerical techniques lead to the introduction of diffusion, dispersion and the bed elevation oscillations previously reported in the literature. Four different bed update schemes are then reviewed and tested against benchmark analytical solutions. These include a first order upwind scheme, two Lax-Wendroff schemes and a non-oscillating centred scheme (NOCS) recently applied to morphological modelling by Saint-Cast [Saint-Cast, F., 2002. Modelisation de la morphodynamique des corps sableux en milieu littoral (Modelling of coastal sand banks morphodynamics), University Bordeaux 1, Bordeaux, 245 pp.]. It is shown that NOCS limits and controls numerical errors while including all the sediment flux gradients that control morphological change. Further, no post solution filtering is required, which avoids difficulties with selecting filter strength. Finally, NOCS is compared to a recent Lax-Wendroff scheme with post-solution filtering for a longer term simulation of the morphological evolution around a trained river entrance. (C) 2006 Elsevier B.V. All rights reserved.
Resumo:
Pattern formation in systems with a conserved quantity is considered by studying the appropriate amplitude equations. The conservation law leads to a large-scale neutral mode that must be included in the asymptotic analysis for pattern formation near onset. Near a stationary bifurcation, the usual Ginzburg--Landau equation for the amplitude of the pattern is then coupled to an equation for the large-scale mode. These amplitude equations show that for certain parameters all roll-type solutions are unstable. This new instability differs from the Eckhaus instability in that it is amplitude-driven and is supercritical. Beyond the stability boundary, there exist stable stationary solutions in the form of strongly modulated patterns. The envelope of these modulations is calculated in terms of Jacobi elliptic functions and, away from the onset of modulation, is closely approximated by a sech profile. Numerical simulations indicate that as the modulation becomes more pronounced, the envelope broadens. A number of applications are considered, including convection with fixed-flux boundaries and convection in a magnetic field, resulting in new instabilities for these systems.
Resumo:
Conservation laws in physics are numerical invariants of the dynamics of a system. In cellular automata (CA), a similar concept has already been defined and studied. To each local pattern of cell states a real value is associated, interpreted as the “energy” (or “mass”, or . . . ) of that pattern.The overall “energy” of a configuration is simply the sum of the energy of the local patterns appearing on different positions in the configuration. We have a conservation law for that energy, if the total energy of each configuration remains constant during the evolution of the CA. For a given conservation law, it is desirable to find microscopic explanations for the dynamics of the conserved energy in terms of flows of energy from one region toward another. Often, it happens that the energy values are from non-negative integers, and are interpreted as the number of “particles” distributed on a configuration. In such cases, it is conjectured that one can always provide a microscopic explanation for the conservation laws by prescribing rules for the local movement of the particles. The onedimensional case has already been solved by Fuk´s and Pivato. We extend this to two-dimensional cellular automata with radius-0,5 neighborhood on the square lattice. We then consider conservation laws in which the energy values are chosen from a commutative group or semigroup. In this case, the class of all conservation laws for a CA form a partially ordered hierarchy. We study the structure of this hierarchy and prove some basic facts about it. Although the local properties of this hierarchy (at least in the group-valued case) are tractable, its global properties turn out to be algorithmically inaccessible. In particular, we prove that it is undecidable whether this hierarchy is trivial (i.e., if the CA has any non-trivial conservation law at all) or unbounded. We point out some interconnections between the structure of this hierarchy and the dynamical properties of the CA. We show that positively expansive CA do not have non-trivial conservation laws. We also investigate a curious relationship between conservation laws and invariant Gibbs measures in reversible and surjective CA. Gibbs measures are known to coincide with the equilibrium states of a lattice system defined in terms of a Hamiltonian. For reversible cellular automata, each conserved quantity may play the role of a Hamiltonian, and provides a Gibbs measure (or a set of Gibbs measures, in case of phase multiplicity) that is invariant. Conversely, every invariant Gibbs measure provides a conservation law for the CA. For surjective CA, the former statement also follows (in a slightly different form) from the variational characterization of the Gibbs measures. For one-dimensional surjective CA, we show that each invariant Gibbs measure provides a conservation law. We also prove that surjective CA almost surely preserve the average information content per cell with respect to any probability measure.
Resumo:
This paper represents the second part of a study of semi-geostrophic (SG) geophysical fluid dynamics. SG dynamics shares certain attractive properties with the better known and more widely used quasi-geostrophic (QG) model, but is also a good prototype for balanced models that are more accurate than QG dynamics. The development of such balanced models is an area of great current interest. The goal of the present work is to extend a central body of QG theory, concerning the evolution of disturbances to prescribed basic states, to SG dynamics. Part 1 was based on the pseudomomentum; Part 2 is based on the pseudoenergy. A pseudoenergy invariant is a conserved quantity, of second order in disturbance amplitude relative to a prescribed steady basic state, which is related to the time symmetry of the system. We derive such an invariant for the semi-geostrophic equations, and use it to obtain: (i) a linear stability theorem analogous to Arnol'd's ‘first theorem’; and (ii) a small-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit. The results are analogous to their quasi-geostrophic forms, and reduce to those forms in the limit of small Rossby number. The results are derived for both the f-plane Boussinesq form of semi-geostrophic dynamics, and its extension to β-plane compressible flow by Magnusdottir & Schubert. Novel features particular to semi-geostrophic dynamics include apparently unnoticed lateral boundary stability criteria. Unlike the boundary stability criteria found in the first part of this study, however, these boundary criteria do not necessarily preclude the construction of provably stable basic states. The interior semi-geostrophic dynamics has an underlying Hamiltonian structure, which guarantees that symmetries in the system correspond naturally to the system's invariants. This is an important motivation for the theoretical approach used in this study. The connection between symmetries and conservation laws is made explicit using Noether's theorem applied to the Eulerian form of the Hamiltonian description of the interior dynamics.
Resumo:
There exists a well-developed body of theory based on quasi-geostrophic (QG) dynamics that is central to our present understanding of large-scale atmospheric and oceanic dynamics. An important question is the extent to which this body of theory may generalize to more accurate dynamical models. As a first step in this process, we here generalize a set of theoretical results, concerning the evolution of disturbances to prescribed basic states, to semi-geostrophic (SG) dynamics. SG dynamics, like QG dynamics, is a Hamiltonian balanced model whose evolution is described by the material conservation of potential vorticity, together with an invertibility principle relating the potential vorticity to the advecting fields. SG dynamics has features that make it a good prototype for balanced models that are more accurate than QG dynamics. In the first part of this two-part study, we derive a pseudomomentum invariant for the SG equations, and use it to obtain: (i) linear and nonlinear generalized Charney–Stern theorems for disturbances to parallel flows; (ii) a finite-amplitude local conservation law for the invariant, obeying the group-velocity property in the WKB limit; and (iii) a wave-mean-flow interaction theorem consisting of generalized Eliassen–Palm flux diagnostics, an elliptic equation for the stream-function tendency, and a non-acceleration theorem. All these results are analogous to their QG forms. The pseudomomentum invariant – a conserved second-order disturbance quantity that is associated with zonal symmetry – is constructed using a variational principle in a similar manner to the QG calculations. Such an approach is possible when the equations of motion under the geostrophic momentum approximation are transformed to isentropic and geostrophic coordinates, in which the ageostrophic advection terms are no longer explicit. Symmetry-related wave-activity invariants such as the pseudomomentum then arise naturally from the Hamiltonian structure of the SG equations. We avoid use of the so-called ‘massless layer’ approach to the modelling of isentropic gradients at the lower boundary, preferring instead to incorporate explicitly those boundary contributions into the wave-activity and stability results. This makes the analogy with QG dynamics most transparent. This paper treats the f-plane Boussinesq form of SG dynamics, and its recent extension to β-plane, compressible flow by Magnusdottir & Schubert. In the limit of small Rossby number, the results reduce to their respective QG forms. Novel features particular to SG dynamics include apparently unnoticed lateral boundary stability criteria in (i), and the necessity of including additional zonal-mean eddy correlation terms besides the zonal-mean potential vorticity fluxes in the wave-mean-flow balance in (iii). In the companion paper, wave-activity conservation laws and stability theorems based on the SG form of the pseudoenergy are presented.
Resumo:
Exact, finite-amplitude, local wave-activity conservation laws are derived for disturbances to steady flows in the context of the two-dimensional anelastic equations. The conservation laws are expressed entirely in terms of Eulerian quantities, and have the property that, in the limit of a small-amplitude, slowly varying, monochromatic wave train, the wave-activity density A and flux F, when averaged over phase, satisfy F = cgA where cg is the group velocity of the waves. For nonparallel steady flows, the only conserved wave activity is a form of disturbance pseudoenergy; when the steady flow is parallel, there is in addition a conservation law for the disturbance pseudomomentum. The above results are obtained not only for isentropic background states (which give the so-called “deep form” of the anelastic equations), but also for arbitrary background potential-temperature profiles θ0(z) so long as the variation in θ0(z) over the depth of the fluid is small compared with θ0 itself. The Hamiltonian structure of the equations is established in both cases, and its symmetry properties discussed. An expression for available potential energy is also derived that, for the case of a stably stratified background state (i.e., dθ0/dz > 0), is locally positive definite; the expression is valid for fully three-dimensional flow. The counterparts to results for the two-dimensional Boussinesq equations are also noted.
Resumo:
The most dynamic component of the conservation movement in the United States for the past three decades has been land conservation transactions. In the United States, land conservation organizations have protected roughly 40 million acres of land through transactions. Most of these acres have been protected using conservation easements. Climate change threatens the vast conservation edifice created by land conservation transactions. The tools of land conservation transactions are, traditionally, stationary. Climate change means that the resources that land conservation transactions were intended to protect may no longer remain on the land protected. Options to purchase conservation easements (OPCEs) have long played a modest but important role in conservation law practice. In the world climate change is creating, with its substantial uncertainties and shifting windows of opportunity, OPCEs can serve more complicated and strategic purposes. The ability of OPCEs to serve important roles in protecting land in the context of uncertainty would be significantly increased if state legislatures amend current conservation easement statutes to (1) specifically recognize OPCEs, (2) immunize OPCEs from a range of potential common law challenges, (3) guarantee the durability and transferability of OPCEs, and (4) integrate OPCEs into the burgeoning body of conservation easement law. These statutory amendments would do for OPCEs what conservation easement statutes have done for conservation easements: transform them into an essential multi-purpose tool for conservation in a changing world.
Resumo:
The South Carolina General Assembly passed legislation in early June 2008 requiring all state agencies to develop energy conservation plans to reduce their energy consumption by one percent per year during fiscal years 2009-2013 and by a total of a 20 percent reduction in energy use by 2020. This legislation requires that each of these entities develop an energy conservation plan that addresses how it will meet energy use reduction goals and submit it to SCEO. This annual report reports the statewide progress in meeting the energy use reduction goals.
Resumo:
We consider a conservation law perturbed by a linear diffusion and a general form of non-positive dispersion. We prove the convergence of the corresponding solution to the entropy weak solution of the hyperbolic conservation law.
Resumo:
We show that suspended nano and microfibres electrospun from liquid crystalline cellulosic solutions will curl into spirals if they are supported at just one end, or, if they are supported at both ends, will twist into a helix of one handedness over half of its length and of the opposite handedness over the other half, the two halves being connected by a short straight section. This latter phenomenon, known as perversion, is a consequence of the intrinsic curvature of the fibres and of a topological conservation law. Furthermore, agreement between theory and experiment can only be achieved if account is taken of the intrinsic torsion of the fibres. Precisely the same behaviour is known to be exhibited by the tendrils of climbing plants such as Passiflora edulis, albeit on a lengthscale of millimetres, i.e., three to four orders of magnitude larger than in our fibres. This suggests that the same basic, coarse-grained physical model is applicable across a range of lengthscales.
Resumo:
For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.
Resumo:
Traditionally Italian universities have trained researchers and professionals in conservation: archaeologists, art historians and architects. It is only with the reform of the universities, from 1999, that the teaching of museology and museography have also been expanded.Italian museums are for the most part public museums, depending on local bodies or the national ministry; they lack autonomy and do not possess specific professional figures. The task of conservation has predominated over the other roles of museums, but with the reform of the conservation law in 2004 the definition of „museum‟ has been introduced in Italy as well, and regulations regarding the development of heritage have been issued; in addition the Regions have also taken on a more active role for museums belonging to local bodies and for the development of their territory.Museum professions are not officially recognised, but the museum community, through the various associations and ICOM Italia, has put together a document to act as a general reference, the National Charter of Museum Professions, which has been followed by the Manual of Museum Professions in Europe. Now there is a need to plan the content and outlines ofvocational training courses for museum professionals, together withthe universities, the regions and the museums themselves, alongwith the associations and ICOM – ICTOP, utilising the mostinnovative Master‟s courses which offer an interdisciplinaryapproach, a methodology which combines theory and practice, andan element of hands-on experimentation in museums, or withmuseums.