884 resultados para Connectivity,Connected Car,Big Data,KPI


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The thesis is the result of work conducted during a period of six months at the Strategy department of Automobili Lamborghini S.p.A. in Sant'Agata Bolognese (BO) and concerns the study and analysis of Big Data relating to Lamborghini's connected cars. The Big Data is a project of Connected Car Project House, that is an inter-departmental team which works toward the definition of the Lamborghini corporate connectivity strategy and its implementation in the product portfolio. The Data of the connected cars is one of the hottest topics right now in the automotive industry; in fact, all the largest automotive companies are investi,ng a lot in this direction, in order to derive the greatest advantages both from a purely economic point of view, because from these data you can understand a lot the behaviors and habits of each driver, and from a technological point of view because it will increasingly promote the development of 5G that will be an important enabler for the future of connectivity. The main purpose of the work by Lamborghini prospective is to analyze the data of the connected cars, in particular a data-set referred to connected Huracans that had been already placed on the market, and, starting from that point, derive valuable Key Performance Indicators (KPIs) on which the company could partly base the decisions to be made in the near future. The key result that we have obtained at the end of this period was the creation of a Dashboard, in which is possible to visualize many parameters and indicators both related to driving habits and the use of the vehicle itself, which has brought great insights on the huge potential and value that is present behind the study of these data. The final Demo of the project has received great interest, not only from the whole strategy department but also from all the other business areas of Lamborghini, making mostly a great awareness that this will be the road to follow in the coming years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The idea behind the project is to develop a methodology for analyzing and developing techniques for the diagnosis and the prediction of the state of charge and health of lithium-ion batteries for automotive applications. For lithium-ion batteries, residual functionality is measured in terms of state of health; however, this value cannot be directly associated with a measurable value, so it must be estimated. The development of the algorithms is based on the identification of the causes of battery degradation, in order to model and predict the trend. Therefore, models have been developed that are able to predict the electrical, thermal and aging behavior. In addition to the model, it was necessary to develop algorithms capable of monitoring the state of the battery, online and offline. This was possible with the use of algorithms based on Kalman filters, which allow the estimation of the system status in real time. Through machine learning algorithms, which allow offline analysis of battery deterioration using a statistical approach, it is possible to analyze information from the entire fleet of vehicles. Both systems work in synergy in order to achieve the best performance. Validation was performed with laboratory tests on different batteries and under different conditions. The development of the model allowed to reduce the time of the experimental tests. Some specific phenomena were tested in the laboratory, and the other cases were artificially generated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The data revolution for sustainable development has triggered interest in the use of big data for official statistics such that theUnited Nations Economic and Social Council considers it to be almost an obligation for statistical organizations to explore big data. Big data has been promoted as a more timely and cheaper alternative to traditional sources of official data, and one that offers great potential for monitoring the sustainable development goals. However, privacy concerns, technology and capacity remain significant obstacles to the use of big data. This study makes a case for incorporating big data in official statitics in the Caribbean by highlight the opportunities that big data provides for the subregion, while suggesting ways to manage the challenges. It serves as a starting point for further discussions on the many facets of big data and provides an initial platform upon which a Caribbean big data strategy could be built.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Market research is often conducted through conventional methods such as surveys, focus groups and interviews. But the drawbacks of these methods are that they can be costly and timeconsuming. This study develops a new method, based on a combination of standard techniques like sentiment analysis and normalisation, to conduct market research in a manner that is free and quick. The method can be used in many application-areas, but this study focuses mainly on the veganism market to identify vegan food preferences in the form of a profile. Several food words are identified, along with their distribution between positive and negative sentiments in the profile. Surprisingly, non-vegan foods such as cheese, cake, milk, pizza and chicken dominate the profile, indicating that there is a significant market for vegan-suitable alternatives for such foods. Meanwhile, vegan-suitable foods such as coconut, potato, blueberries, kale and tofu also make strong appearances in the profile. Validation is performed by using the method on Volkswagen vehicle data to identify positive and negative sentiment across five car models. Some results were found to be consistent with sales figures and expert reviews, while others were inconsistent. The reliability of the method is therefore questionable, so the results should be used with caution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Internet das Coisas tal como o Big Data e a análise dos dados são dos temas mais discutidos ao querermos observar ou prever as tendências do mercado para as próximas décadas, como o volume económico, financeiro e social, pelo que será relevante perceber a importância destes temas na atualidade. Nesta dissertação será descrita a origem da Internet das Coisas, a sua definição (por vezes confundida com o termo Machine to Machine, redes interligadas de máquinas controladas e monitorizadas remotamente e que possibilitam a troca de dados (Bahga e Madisetti 2014)), o seu ecossistema que envolve a tecnologia, software, dispositivos, aplicações, a infra-estrutura envolvente, e ainda os aspetos relacionados com a segurança, privacidade e modelos de negócios da Internet das Coisas. Pretende-se igualmente explicar cada um dos “Vs” associados ao Big Data: Velocidade, Volume, Variedade e Veracidade, a importância da Business Inteligence e do Data Mining, destacando-se algumas técnicas utilizadas de modo a transformar o volume dos dados em conhecimento para as empresas. Um dos objetivos deste trabalho é a análise das áreas de IoT, modelos de negócio e as implicações do Big Data e da análise de dados como elementos chave para a dinamização do negócio de uma empresa nesta área. O mercado da Internet of Things tem vindo a ganhar dimensão, fruto da Internet e da tecnologia. Devido à importância destes dois recursos e á falta de estudos em Portugal neste campo, com esta dissertação, sustentada na metodologia do “Estudo do Caso”, pretende-se dar a conhecer a experiência portuguesa no mercado da Internet das Coisas. Visa-se assim perceber quais os mecanismos utilizados para trabalhar os dados, a metodologia, sua importância, que consequências trazem para o modelo de negócio e quais as decisões tomadas com base nesses mesmos dados. Este estudo tem ainda como objetivo incentivar empresas portuguesas que estejam neste mercado ou que nele pretendam aceder, a adoptarem estratégias, mecanismos e ferramentas concretas no que diz respeito ao Big Data e análise dos dados.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia e Gestão de Sistemas de Informação

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the rapid increase of species with a sequenced genome, the need to identify orthologous genes between them has emerged as a central bioinformatics task. Many different methods exist for orthology detection, which makes it difficult to decide which one to choose for a particular application. Here, we review the latest developments and issues in the orthology field, and summarize the most recent results reported at the third 'Quest for Orthologs' meeting. We focus on community efforts such as the adoption of reference proteomes, standard file formats and benchmarking. Progress in these areas is good, and they are already beneficial to both orthology consumers and providers. However, a major current issue is that the massive increase in complete proteomes poses computational challenges to many of the ortholog database providers, as most orthology inference algorithms scale at least quadratically with the number of proteomes. The Quest for Orthologs consortium is an open community with a number of working groups that join efforts to enhance various aspects of orthology analysis, such as defining standard formats and datasets, documenting community resources and benchmarking. AVAILABILITY AND IMPLEMENTATION: All such materials are available at http://questfororthologs.org. CONTACT: erik.sonnhammer@scilifelab.se or c.dessimoz@ucl.ac.uk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emergence of powerful new technologies, the existence of large quantities of data, and increasing demands for the extraction of added value from these technologies and data have created a number of significant challenges for those charged with both corporate and information technology management. The possibilities are great, the expectations high, and the risks significant. Organisations seeking to employ cloud technologies and exploit the value of the data to which they have access, be this in the form of "Big Data" available from different external sources or data held within the organisation, in structured or unstructured formats, need to understand the risks involved in such activities. Data owners have responsibilities towards the subjects of the data and must also, frequently, demonstrate that they are in compliance with current standards, laws and regulations. This thesis sets out to explore the nature of the technologies that organisations might utilise, identify the most pertinent constraints and risks, and propose a framework for the management of data from discovery to external hosting that will allow the most significant risks to be managed through the definition, implementation, and performance of appropriate internal control activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En este trabajo se hace una evaluación de la solución Big Data Hadoop como alternativa de almacenamiento y procesado de elevados volúmenes de datos en comparación con modelos relacionales tradicionales en un Enterprise Data Warehouse (EDW) corporativo, y de cómo ésta es capaz de integrarse con las herramientas de visualización típicas de las suites Business Intelligence.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degut al gran interès actual per instal·lar clústers dedicats al tractament de dades amb Hadoop, s'ha dissenyat una distribució de Linux que automatitza totes les tasques associades. Aquesta distribució permet fer el desplegament sobre un clúster i realitzar una configuració bàsica del mateix de la forma més desatesa possible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En aquest treball es presenta el laboratori que l'eLearn Center posa a disposició del professorat i investigadors en e-learning de la UOC per al disseny sistemàtic d'experiments sota una perspectiva de Learning Analytics, però tambémecanismes per fer seguiment i documentar tot el procés que envolta el disseny d'experiències docents de forma que sigui més senzill transferir-les a altres àmbits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Este proyecto de final de carrera corresponde al área de inteligencia artificial y representa un caso de uso que pretende utilizar datos reales referentes a accidentes de tráfico (datos de accidentes, muertos, heridos, etc.) y analizarlas conjuntamente con datos que puedan tener una posible relación con los accidentes como el parque de vehículos, las temperaturas de la zona de los accidentes, etc. con la finalidad de poder obtener las posibles relaciones causa-efecto.