893 resultados para Conjugated copolymers


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of new phenyl-based conjugated copolymers has been synthesized and investigated by vibrational and photoluminescence spectroscopy (PL). The materials are: poly( 1,4-phenylene-alt-3,6-pyridazine) (COP-PIR), poly(9,9-dioctylfluorene)-co-quaterphenylene (COP-PPP) and poly[(1,4-phenylene-alt-3,6-pyridazine)-co-(1,4-phenylene-alt-9,9-dioctylfluorene)] (COP-PIR-FLUOR), with 3.5% of fluorene. COP-PPP and COP-PIR-FLUOR have high fluorescence quantum yields in solution. Infrared and Raman spectra were used to check the chemical structure of the compounds. The copolymers exhibit blue emission ranging front 2.8 to 3.6 eV when excited at E(exc)=4.13 eV. Stokes-shift Values were estimated on pristine samples in their condensed state from steady-state PL-emission and PL-excitation spectra. They suggest a difference in the torsional angle between the molecular configuration of the polymer blocks at the absorption and PL transitions and also in the photoexcitation diffusion. Additionally, the time-resolved PL of these materials has been investigated by using 100 fs laser pulses at E(exc)=4.64 eV and a streak camera. Results show very fast biexponential kinetics for the two fluorene-based polymers with decay times below 300 ps indicating both intramolecular, fast radiative recombination and migration of photogenerated electron-hole pairs. By contrast, the PL of COP-PIR is less intense and longer lived, indicating that excitons are confined to the chains in this polymer. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The emissive properties of terpolymers with fluorene, thiophene and phenylene groups, forming alternating PPV type structures, are discussed in terms of their composition, photo- and electroluminescence properties. The fluorene groups were inserted in each phenylene-vinylene and thiophene-vinylene units, and their concentration did not vary, representing 50% of the molar composition. The ratio of thiophene-vinylene/phenylene-vinylene varied in the range 25,50 and 75%. Photo- and electroluminescence properties were strongly dependent on the thiophene-vinylene content and were compared with the fluorene-vinylene-thiophene and fluorene-vinylene-phenylene parent copolymers. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The radiolysis of nitrile rubbers with different acrylonitrile/butadiene composition and the homopolymers, poly(butadiene) (PBD) and poly(acrylonitrile) (PAN) has been investigated and compared with the photolysis of the same polymers. A significantly different mechanism of degradation was found for the two types of radiation. The results obtained by ESR, FTIR and measurements of soluble fractions of irradiated samples, indicated that the acrylonitrile units of the nitrile rubbers are more sensitive units to gamma-radiation, with the effects of irradiation increasing with the acrylonitrile content. The reactions observed were consumption of double bonds, crosslinking, and cyclization with the formation of conjugated double bonds. No chain-scission reactions were detected. In contrast to gamma-irradiation, the effects of photolysis were centred at the butadiene units, and increases in the acrylonitrile content resulted in a proportional decrease in the sensitivity of the copolymers. Crosslinking and chain scission were identified as the main effects of photolysis of NBR rubbers. (C) 1999 Society of Chemical Industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of poly(ethylene glycol) PEG crystallization on P-sheet fibril formation is studied for a series of three peptide/PEG conjugates containing fragments modified from the amyloid P peptide, specifically KLVFF, FFKLVFF, and AAKLVFF. These are conjugated to PEG with M-n = 3300 g mol(-1). It is found, via small-angle X-ray scattering,X-ray diffraction, atomic force microscopy, and polarized optical microscopy, that PEG crystallinity in dried samples can disturb fibrillization, in particular cross-P amyloid structure formation, for the conjugate containing the weak fibrillizer KLVFF, whereas this is retained for the conjugates containing the stronger fibrillizers AAKLVFF and FFKLVFF. For these two samples, the alignment of peptide fibrils also drives the orientation of the attached PEG chains. Our results highlight the importance of the antagonistic effects of PEG crystallization and peptide fibril formation in PEG/peptide conjugates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ordered nanostructures are observed in the melt and solid state for a series of three peptide/PEG conjugates containing fragments of amyloid beta-peptides. These are conjugated to PEG with (M) over bar (n) = 3 300 g.mol(-1) and a melting temperature T-m = 45-50 degrees C. The morphology at room temperature is examined by AFM and POM. This shows spherulite formation for the weakly fibrillizing KLVFF-PEG sample but fibril formation for FFKLVFF-PEG. The fibrillization tendency of the latter is enhanced by multiple phenylalanine residues. Simultaneous SAXS and WAXS was used to investigate the morphology as a function of temperature. The secondary structure is probed by FTIR.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The temperature dependence has been investigated for the photoinduced birefringence in Langmuir-Blodgett (LB) films from the azocopolymer 4-[N- ethyl -N-(2-hydroxyethyl)] amino-2'-chloro-4'-nitroazobenzene (MMA-DR13) mixed with cadmium stearate. The buildup and relaxation of the birefringence in the range from 20 to 296 K were fitted with a Kohlrausch-Williams-Watts (KWW) function, with a beta-value of 0.78-0.98 for the build-up and 0.18-0.27 for the decay. This is consistent with a distribution of time constants for the kinetics of the birefringence processes. The maximum birefringence increased with increasing temperature up to 120 K because the free volume fluctuation also increased with temperature. Above 120 K, the birefringence decreased with temperature as thermal diffusion dominates. In the latter range of temperature, an Arrhenius behavior is inferred for both build-up and decay of birefringence. In each case two activation energies were obtained: 0.8 and 5 kJ/mol for the build-up and 10 and 30 kJ/mol for the decay. The energies for the build-up are much lower than those associated with motion of the polymer chain, which means that the dynamics is governed by the orientation of the chromophores. For the decay, local motion of lateral groups of the polymer chains becomes important as the activation energies are within the range of gamma-relaxation energies. (C) 2003 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work reports a detailed spectroscopy study of a series of multiblock conjugated nonconjugated copolymers built by p-phenylene vinylene type units (PV) and octamethylene spacers, namely, poly(1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene) (LaPPS18). The relative proportions of the PV and aliphatic segments were estimated on the basis of solid-state NMR and Raman spectroscopy. The overall structure was characterized by wide angle X-ray diffraction; H-1 wide-line dipolar chemical shift correlation (DIPSHIFT), and centerband-only detection of exchange (CODEX) NMR data, that together with glass transition temperatures allowed us to identify the groups involved in the molecular dynamics. These different structural properties were used to explain the photoluminescence properties in terms of peak position and spectral profile

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conjugated polymers have attracted tremendous academical and industrial research interest over the past decades due to the appealing advantages that organic / polymeric materials offer for electronic applications and devices such as organic light emitting diodes (OLED), organic field effect transistors (OFET), organic solar cells (OSC), photodiodes and plastic lasers. The optimization of organic materials for applications in optoelectronic devices requires detailed knowledge of their photophysical properties, for instance energy levels of excited singlet and triplet states, excited state decay mechanisms and charge carrier mobilities. In the present work a variety of different conjugated (co)polymers, mainly polyspirobifluorene- and polyfluorene-type materials, was investigated using time-resolved photoluminescence spectroscopy in the picosecond to second time domain to study their elementary photophysical properties and to get a deeper insight into structure-property relationships. The experiments cover fluorescence spectroscopy using Streak Camera techniques as well as time-delayed gated detection techniques for the investigation of delayed fluorescence and phosphorescence. All measurements were performed on the solid state, i.e. thin polymer films and on diluted solutions. Starting from the elementary photophysical properties of conjugated polymers the experiments were extended to studies of singlet and triplet energy transfer processes in polymer blends, polymer-triplet emitter blends and copolymers. The phenomenon of photonenergy upconversion was investigated in blue light-emitting polymer matrices doped with metallated porphyrin derivatives supposing an bimolecular annihilation upconversion mechanism which could be experimentally verified on a series of copolymers. This mechanism allows for more efficient photonenergy upconversion than previously reported for polyfluorene derivatives. In addition to the above described spectroscopical experiments, amplified spontaneous emission (ASE) in thin film polymer waveguides was studied employing a fully-arylated poly(indenofluorene) as the gain medium. It was found that the material exhibits a very low threshold value for amplification of blue light combined with an excellent oxidative stability, which makes it interesting as active material for organic solid state lasers. Apart from spectroscopical experiments, transient photocurrent measurements on conjugated polymers were performed as well to elucidate the charge carrier mobility in the solid state, which is an important material parameter for device applications. A modified time-of-flight (TOF) technique using a charge carrier generation layer allowed to study hole transport in a series of spirobifluorene copolymers to unravel the structure-mobility relationship by comparison with the homopolymer. Not only the charge carrier mobility could be determined for the series of polymers but also field- and temperature-dependent measurements analyzed in the framework of the Gaussian disorder model showed that results coincide very well with the predictions of the model. Thus, the validity of the disorder concept for charge carrier transport in amorphous glassy materials could be verified for the investigated series of copolymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work supramolecular organic systems based on rigid pi-conjugated building blocks and flexible side chains were studied via solid-state NMR spectroscopy. Specifically, these studies focussed on phenylene ethynylene based macrocycles, polymer systems including polythiophenes, and rod-coil copolymers of oligo(p-benzamide) and poly(ethylene glycol). All systems were studied in terms of the local order and mobility. The central topic of this dissertation was to elucidate the role of the flexible side chains in interplay of different non-covalent interactions, like pi-pi-stacking and hydrogen bonding.Combining the results of this work, it can be concluded that the ratio of the rigid block and the attached alkyl side chains can be crucial for the design of an ordered pi-conjugated supramolecular system. Through alkyl side chains, it is also possible to introduce liquid-crystalline phases in the system, which can foster the local order of the system. Moreover in the studied system longer, unbranched alkyl side chains are better suited to stabilize the corresponding aggregation than shorter, branched ones.The combination of non-covalent interactions such as pi-pi-stacking and hydrogen bonding play an important role for structure formation. However, the effect of pi-pi-stacking interaction is much weaker than the effect of hydrogen bonding and is only observed in systems with a suitable local order. Hence, they are often not strong enough to control the local order. In contrast, hydrogen bonds predominantly influence the structural organization and packing. In comparison the size of the alkyl side chains is only of minor importance. The suppression of certain hydrogen bonds can lead to completely different structures and can induce a specific aggregation behavior. Thus, for the design of a supramolecular ordered system the presence of hydrogen bonding efficiently stabilizes the corresponding structure, but the ratio of hydrogen bond forming groups should be kept low to be able to influence the structure selectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

p-Conjugated block copolymers have been prepared from terminal azide functionalized polystyrenes (PS) and alkyne functionalized poly(3- hexylthiophene)s (P3HT) via a copper(I) catalyzed Huisgen [3 + 2] dipolar cycloaddition reaction. The functionalized a-azido-PS homopolymer was prepared by atom transfer radical polymerization from a specifically designed initiator bearing the azide function, whereas ?-ethynyl-P3HT and a,?-pentynyl-P3HT were synthesized by a modified Grignard metathesis polymerization using alkynyl Grignard derivatives. The electronic environment of the alkynyl end groups was shown to be decisive in determining triazole ring formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Isosorbide succinate moieties were incorporated into poly(L-lactide) (PLLA) backbone in order to obtain a new class of biodegradable polymer with enhanced properties. This paper describes the synthesis and characterization of four types of low molecular weight copolymers. Copolymer I was obtained from monomer mixtures of L-lactide, isosorbide, and succinic anhydride; II from oligo(L-lactide) (PLLA), isosorbide, and succinic anhydride; III from oligo(isosorbide succinate) (PIS) and L-lactide; and IV from transesterification reactions between PLLA and PIS. MALDI-TOFMS and 13C-NMR analyses gave evidence that co-oligomerization was successfully attained in all cases. The data suggested that the product I is a random co-oligomer and the products II-IV are block co-oligomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present study was to determine the effects of trans-10, cis-12 conjugated linoleic acid (CLA) in adipose tissue explant cultures of growing pigs on the following responses: lipogenesis (measured as rate of C-14-labeled glucose incorporation over a subsequent 2-h incubation in the presence or absence of insulin), lipolysis (release of non-esterified fatty acid over a 2-h incubation in the presence or absence of isoproterenol), activities of lipogenic enzymes, and mRNA abundance of fatty acid synthase (FAS). Adipose tissue explants from nine growing pigs (78 +/- 3 kg) were cultured in 199 medium with insulin, dexamethasone and antibiotics for 4, 12, 24, and 48 h. The treatments were 1) control: 100 mu M polyvinyl alcohol (PVA); 2) pGH: 100 ng/mL porcine growth hormone (pGH) plus 100 mu M PVA; 3) CLA200: 200 mu M trans-10, cis-12 CLA; 4) CLA50: 50 mu M trans-10, cis-12 CLA, and 5) LA: 200 mu M linoleic acid. Fatty acids were added along with PVA (2: 1), respectively, for 24 h. Explants were collected after each culture period and assayed for lipogenesis. Transcripts of FAS mRNA were quantified by real-time RT-PCR after 24 and 48 h. Lipolysis and activities of FAS, glucose 6-phosphate dehydrogenase, 6-phosphogluconate dehydrogenase, and NADP-malate dehydrogenase were determined after 48 h. As expected, glucose incorporation was decreased (P < 0.05) in response to pGH treatment (positive control). LA had no effect on any parameter evaluated. Treatment with trans-10, cis-12 CLA decreased FAS activity (P < 0.05), but NADPH-generating enzymes were unaffected by treatments. Consistent with reduction in FAS activity, both lipid synthesis and FAS mRNA abundance were reduced with chronic CLA treatment, pGH increased baseline and stimulated lipolysis (P < 0.05) after 48 h of culture, while CLA treatment had no effect on non-esterified fatty acid release. Results of this study showed that trans-10, cis-12 CLA alters lipogenesis but has no effect on lipolysis in cultures of pig adipose tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A meso-tetrakis(pentafluorophenyl)-chlorin with the reduced pyrrole ring linked to an isoxazolidine ring (FC) has been conjugated to four beta-cyclodextrins (CDFC). The CDFC exhibits excellent water solubility and is a potent photosensitizer towards proliferating NCTC 2544 human keratinocytes. The study by conventional steady state absorption and fluorescence spectroscopies and by time-resolved femto- and nanosecond laser flash spectroscopies suggests that in ethanol and pH 7 buffer the beta-cyclodextrins embed the highly hydrophobic tetrakis(pentafluorophenyl)-chlorin macrocycle and strongly interact with the chlorin rings in the singlet and triplet manifolds. In these solvents, femtosecond spectroscopy suggests that the conjugate undergoes a rapid relaxation in the upper excited singlet states induced by photochemical and/or conformation change(s) at a rate of about 5 ps(-1) to fluorescent states whose lifetime is similar to 8 ns. This interaction is destroyed upon addition of Triton X100 to buffer. Both FC and CDFC strongly fluoresce (Phi(F) similar to 0.5) in micelles. Similar behavior is observed at the triplet level. In ethanol and water, the initial transient triplet state absorbance decays within 1-3 mu s yielding a longer lived triplet with spectral properties indistinguishable from that of original difference absorbance spectra. The determination of the molar absorbance in the 440-460 nm region (similar to 35 000 M(-1) cm(-1)) leads to an estimate of similar to 0.2 for the triplet formation quantum yield of FC in toluene and of FC and CDFC in Triton X100 micelles. Quenching of the CDFC triplets by dioxygen in buffer produces (1)O(2) in a good yield consistent with the effective photocytotoxicity of the chlorin-cyclodextrins conjugate towards cultured NCTC 2544 human keratinocytes. By contrast, FC which aggregates in buffer produces little if any (1)O(2).