1000 resultados para Conidial production
Resumo:
Melanose, caused by Diaporthe citri, produces reddish brown lesions on the fruit, leaves, and twigs of citrus trees, and greatly reduces the marketability of fresh fruit. Most of the inoculum is produced in pycnidia on dead twigs in the tree canopy, which exude large numbers of conidia in slimy masses. In this study, detached twigs inoculated with conidia were readily colonized and produced large numbers of pycnidia within 30 to 40 days when they were soaked 3 to 4 h on alternate days. Conidial production was measured by wetting twigs in a rain tower periodically and collecting the conidia in the runoff water. Production began after 80 days and continued for nearly 300 days. In other experiments, production of mature pycnidia on detached twigs was greatest at 94 to 100% relative humidity (RH) and at 28 degrees C. Low RH and temperature, however, favored survival of conidia in exuded masses on twigs. In the field, colonization of detached twigs by D. citri was high in rainy season, moderate in spring and early fall, and minimal in late fall and winter. Twig colonization was positively related to the number of rain days and average temperature, but not to total rainfall. In another experiment, inoculated twigs placed in the tree canopy developed pycnidia and then produced conidial masses for about 200 days. D. citri is a serious pathogen, but a weak parasite, that survives primarily by colonization and reproduction on dead twigs.
Resumo:
The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
O presente ensaio foi realizado com o objetivo de avaliar a produção de biomassa micelial bem como a esporulação de Cercospora piaropi, nos meios líquidos V8, ETD (Extrato de Tomate Diluído) e BD (Batata - Dextrose), em períodos de cultivo de 96, 120, 144 e 168 h, sob agitação constante. Adicionalmente foi avaliado o efeito de períodos de desidratação da biomassa micelial (24, 48, 72, 96 e 120 h) sobre a esporulação. Os inóculos obtidos foram avaliados quanto à severidade da doença em plantas de aguapé (Eichhornia crassipes). de acordo com os resultados, o meio ETD proporcionou maior crescimento micelial em relação aos meios BD e V8, destacando-se o período de 144 h de agitação. Entretanto, o meio V8 induziu esporulação superior do patógeno, quando cultivado por 120 h. Os inóculos obtidos nos meios V8 e ETD causaram maiores valores de severidade da doença. O período de desidratação da biomassa micelial a partir de 72 h favoreceu maior produção de conídios. Não houve efeito do período de desidratação sobre a severidade da doença.
Resumo:
Alternaria brown spot, caused by Alternaria alternata, causes yield losses and fruit blemishes on many tangerines and their hybrids in most citrus areas of the world where susceptible cultivars are grown. Although the conditions affecting infection and disease severity are known, little information is available on inoculum production on infected tissue. We found that sporulation on leaves began about 10 days after symptoms developed, was abundant from 20 to 40 days, and declined thereafter. Conidial production was far greater on leaf than on fruit or twig lesions. Spore production per unit area of leaf lesion was greater on the more susceptible hybrids, Minneola and Orlando tangelos, than on the less susceptible Murcott tangor. At 74% relative humidity, conidial production on leaf lesions was low, but it was abundant at 85, 92.5, 96, and 100%. Application of Q(o)I or copper fungicides, but not ferbam, suppressed sporulation on leaf lesions for about 14 to 21 days after application. Additional applications did not appear to be more effective than a single spray in reducing inoculum production.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The effects of silicon (Si) supplied in the form of potassium silicate (PS) were evaluated on epidemic components of powdery mildew of melon under greenhouse conditions. The PS was applied to the roots or to leaves. In the first experiment, epidemic components were evaluated after inoculation with Podosphaera xanthii. In the second experiment, the disease progress rate was evaluated on plants subjected to natural infection. The area under the disease progress curve was reduced by 65% and 73% in the foliar and root treatments, respectively, compared to control plants, as a consequence of reductions in infection efficiency, colony expansion rate, colony area, conidial production and disease progress rate. However, root application of PS was more effective than foliar application in reducing most of the epidemic components, except for infection efficiency. This can be explained by the high Si concentration in leaf tissues with root application, in contrast to the foliar treatment where Si was only deposited on the external leaf surfaces. The effects of PS reported in this study demonstrated that powdery mildew of melon can be controlled, and that the best results can be achieved when PS is supplied to the roots.
Resumo:
A chitinolytic fungus, Beau6eria bassiana was isolated from marine sediment and significant process parameters influencing chitinase production in solid state fermentation using wheat bran were optimised. The organism was strongly alkalophilic and produced maximum chitinase at pH 9·20. The NaCl and colloidal chitin requirements varied with the type of moistening medium used. Vegetative (mycelial) inoculum was more suitable than conidial inoculum for obtaining maximal enzyme yield. The addition of phosphate and yeast extract resulted in enhancement of chitinase yield. After optimisation, the maximum enzyme yield was 246·6 units g 1 initial dry substrate (U gIDS 1). This is the first report of the production of chitinase from a marine fungus.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)