959 resultados para Congenital adrenal hyperplasia
Resumo:
Type II 3β-hydroxysteroid dehydrogenase/Δ5-Δ4-isomerase (3β-HSD2), encoded by the HSD3B2 gene, is a key enzyme involved in the biosynthesis of all the classes of steroid hormones. Deleterious mutations in the HSD3B2 gene cause the classical deficiency of 3β-HSD2, which is a rare autosomal recessive disease that leads to congenital adrenal hyperplasia (CAH). CAH is the most frequent cause of ambiguous genitalia and adrenal insufficiency in newborn infants with variable degrees of salt losing. Here we report the molecular and structural analysis of the HSD3B2 gene in a 46,XY child, who was born from consanguineous parents, and presented with ambiguous genitalia and salt losing. The patient carries a homozygous nucleotide c.665C>A change in exon 4 that putatively substitutes the proline at codon 222 for glutamine. Molecular homology modeling of normal and mutant 3β-HSD2 enzymes emphasizes codon 222 as an important residue for the folding pattern of the enzyme and validates a suitable model for analysis of new mutations.
Resumo:
OBJECTIVE: To evaluate insulin resistance and lipid profile in women with congenital adrenal hyperplasia (CAH) caused by classical 21-hydroxylase deficiency (21OHD), and their association with body mass index (BMI) and corticosteroid dosage. SUBJECTS AND METHODS: We assessed BMI, waist circumference, current glucocorticoid dosage, glucose, insulin and lipid profile in eighteen young women (mean ± SD, 19.3 ± 3.0 years) with 21OHD CAH. RESULTS: BMI was normal in 12 patients, 5 of them were overweight, and 1 was obese. Waist circumference was high in 7 patients. Fasting insulin and HOMA-IR were elevated in seven and eight patients, respectively. Total cholesterol and triglycerides were high in only two patients, and HDL-cholesterol was low in four. Insulin resistance was not associated with BMI, waist circumference or glucocorticoid dose. CONCLUSIONS: Young women with 21OHD CAH had infrequent dyslipidemia, but had a higher prevalence of insulin resistance and central obesity, that were independent of BMI or corticosteroid dosage.
Resumo:
Neonatal screening for congenital adrenal hyperplasia (CAH) is useful in diagnosing salt wasting form (SW). However, there are difficulties in interpreting positive results in asymptomatic newborns. The main objective is to analyze genotyping as a confirmatory test in children with neonatal positive results. Patients comprised 23 CAH children and 19 asymptomatic infants with persistently elevated 17-hydroxyprogesterone (17OHP) levels. CYP21A2 gene was sequenced and genotypes were grouped according to the enzymatic activity of the less severe allele: A1 null, A2 < 2%, B 3-7%, C > 20%. Twenty-one children with neonatal symptoms and/or 17OHP levels > 80 ng/ml carried A genotypes, except two virilized girls (17OHP < 50 ng/ml) without CAH genotypes. Patients carrying SW genotypes (A1, A2) and low serum sodium levels presented with neonatal 17OHP > 200 ng/ml. Three asymptomatic boys carried simple virilizing genotypes (A2 and B): in two, the symptoms began at 18 months; another two asymptomatic boys had nonclassical genotypes (C). The remaining 14 patients did not present CAH genotypes, and their 17OHP levels were normalized by 14 months of age. Molecular analysis is useful as a confirmatory test of CAH, mainly in boys. It can predict clinical course, identify false-positives and help distinguish between clinical forms of CAH.
Resumo:
The incidence of 21-hydroxylase deficiency (CYP21 D) congenital adrenal hyperplasia (CAH) in Brazil is purportedly one of the highest in the world (1:7,533). However, this information is not based on official data. The aim of this study was to determine the incidence of CYP21 D CAH in the state of Goias, Brazil, based on the 2005 results of government-funded mandatory screening. Of the live births during this period, 92.95% were screened by heel-prick capillary 17 alpha-hydroxyprogesterone (17-OHP). Of these, 82,343 were normal, 28 were at high risk for CAH and 232 at low risk for CAH. Eight cases, all from the high risk group, were confirmed. Eight asymptomatic children at 6-18 months of age still have high 17-OHP levels and await diagnostic definition. Based on the number of confirmed CYP21 D CAH cases among the 82,603 screened, the estimated annual incidence of the disease was 1:10,325, lower than the previously reported rate in Brazil.
Resumo:
Deficiency of 21-hydroxylase is the most common form of congenital adrenal hyperplasia (CAH-21OH). We determined by allele-specific PCR the frequency of microconversion in the CYP21A2 gene in 50 Brazilian patients with the classical (salt wasting: SW and simple virilizing: SV) forms and nonclassical (NC) form of CAH-21OH and correlated genotype with phenotype. Genotypes were classified into three mutation groups (A, B, and C) based on the amount of enzymatic activity in in vitro studies using adrenal cells. In 94 unrelated alleles, we diagnosed 76% of the affected alleles after screening for 7 microconversions. The most frequent point mutations observed in this series were I172N (19%), V281L (18%), and IVS2,A/C>G,-12 (15%). In the SW form, the most frequent mutation was IVS2,A/C>G,-12 (38%), in the SV form it was I172N (53%), and in the NC form it was V281L (57.7%). We observed a good correlation between genotype and phenotype. Discordance between genotype and phenotype was found in one SV patient with a mild mutation in one of the alleles (R356W/V281L). However, we cannot rule out the presence of an additional mutation in these alleles. We also observed a good correlation of genotype with 17alpha-hydroxyprogesterone, testosterone, and androstenedione levels. The severity of external genitalia virilization correlated with the severity of mutation. In conclusion, the frequencies described in the present study did not differ from worldwide studies, including the Brazilian population. The few differences observed may reflect individual sample variations. This new Brazilian cohort study suggests the presence of new mutations in Brazilian patients with different forms of CAH-21OH.
Resumo:
The most frequent form of congenital adrenal hyperplasia (CAH) is steroid 21-hydroxylase deficiency, accounting for more than 90% of cases. Affected patients cannot synthesize cortisol efficiently. Thus the adrenal cortex is stimulated by corticotropin (ACTH) and overproduces cortisol precursors. Some precursors are diverted to sex hormone biosynthesis, causing signs of androgen excess including ambiguous genitalia in newborn females and rapid postnatal growth in both sexes. In the most severe "salt wasting" form of CAH (similar to 75% of severe or "classic" cases), concomitant aldosterone deficiency may lead to salt wasting with consequent failure to thrive, hypovolemia, and shock. Newborn screening minimizes delays in diagnosis, especially in males, and reduces morbidity and mortality from adrenal crises. CAH is a recessive disorder caused by mutations in the CYP21 (CYP21A2) gene, most of which arise from recombination between CYP21 and a nearby pseudogene, CYP21P (CYP21A1P). Phenotype is generally correlated with genotype. Classic CAH patients require chronic glucocorticoid treatment at the lowest dose that adequately suppresses adrenal androgens and maintains normal growth and weight gain, and most require mineralocorticoid (fludrocortisone). Transition of care of older patients to adult physicians should be planned in advance as a structured, ongoing process.
Resumo:
Patients with rare and complex diseases such as congenital adrenal hyperplasia (CAH) often receive fragmented and inadequate care unless efforts are coordinated among providers. Translating the concepts of the medical home and comprehensive health care for individuals with CAH offers many benefits for the affected individuals and their families. This manuscript represents the recommendations of a 1.5 day meeting held in September 2009 to discuss the ideal goals for comprehensive care centers for newborns, infants, children, adolescents, and adults with CAH. Participants included pediatric endocrinologists, internal medicine and reproductive endocrinologists, pediatric urologists, pediatric surgeons, psychologists, and pediatric endocrine nurse educators. One unique aspect of this meeting was the active participation of individuals personally affected by CAH as patients or parents of patients. Representatives of Health Research and Services Administration (HRSA), New York-Mid-Atlantic Consortium for Genetics and Newborn Screening Services (NYMAC), and National Newborn Screening and Genetics Resource Center (NNSGRC) also participated. Thus, this document should serve as a "roadmap" for the development phases of comprehensive care centers (CCC) for individuals and families affected by CAH.
Resumo:
Background: Prenatal glucocorticoid (GC) treatment of the female fetus with 21-hydroxylase deficiency (21-OHD) may prevent genital virilization and androgen effects on the brain, but prenatal GC therapy is controversial because of possible adverse effects on fetal programming, the cardiovascular system and the brain. Case Reports: We report 2 patients with congenital adrenal hyperplasia (CAH) due to 21-OHD who were treated prenatally with dexamethasone, suffered from an acute encephalopathy and showed focal and multifocal cortical and subcortical diffusion restrictions in early MRI and signs of permanent alterations in the follow-up neuroimaging studies. Both patients recovered from the acute episode. Whereas the first patient recovered without neurological sequelae the second patient showed hemianopsia and spastic hemiplegia in the neurological follow-up examination. Conclusion: These are 2 children with CAH, both treated prenatally with high doses of dexamethasone to prevent virilization. The question arises whether prenatal high-dose GC treatment in patients with CAH might represent a risk factor for brain lesions in later life. Adverse effects/events should be reported systematically in patients undergoing prenatal GC treatment and long-term follow-up studies involving risk factors for cerebrovascular disease should be performed.
Resumo:
PURPOSE OF REVIEW: P450 oxidoreductase deficiency--a newly described form of congenital adrenal hyperplasia--typically presents a steroid profile suggesting combined deficiencies of steroid 21-hydroxylase and 17alpha-hydroxylase/17,20-lyase activities. These and other enzymes require electron donation from P450 oxidoreductase. The clinical spectrum of P450 oxidoreductase deficiency ranges from severely affected children with ambiguous genitalia, adrenal insufficiency and the Antley-Bixler skeletal malformation syndrome to mildly affected individuals with polycystic ovary syndrome. We review current knowledge of P450 oxidoreductase deficiency and its broader implications. RECENT FINDINGS: Since the first report in 2004, at least 21 P450 oxidoreductase mutations have been reported in over 40 patients. The often subtle manifestations of P450 oxidoreductase deficiency suggest it may be relatively common. P450 oxidoreductase deficiency, with or without Antley-Bixler syndrome, is autosomal recessive, whereas Antley-Bixler syndrome without disordered steroidogenesis is caused by autosomal dominant fibroblast growth factor receptor 2 mutations. In-vitro assays of P450 oxidoreductase missense mutations based on P450 oxidoreductase-supported P450c17 activities provide excellent genotype/phenotype correlations. The causal connection between P450 oxidoreductase deficiency and disordered bone formation remains unclear. SUMMARY: P450 oxidoreductase mutations cause combined partial deficiency of 17alpha-hydroxylase and 21-hydroxylase. Individuals with an Antley-Bixler syndrome-like phenotype presenting with sexual ambiguity or other abnormalities in steroidogenesis should be analyzed for P450 oxidoreductase deficiency.
Resumo:
Patients with adrenal insufficiency, genital anomalies and bony malformations resembling the Antley- Bixler syndrome (a craniosynostosis syndrome), are likely to have P450 oxidoreductase (POR) deficiency. Since our first report in 2004, about 26 recessive POR mutations have been identified in 50 patients. POR is the obligate electron donor to all microsomal (type II) P450 enzymes, including the steroidogenic enzymes CYP17A1, CYP21A2 and CYP19A1. POR deficiency may cause disordered sexual development manifested as genital undervirilization in 46,XY newborns as well as overvirilization in those who are 46,XX. This may be explained by impaired aromatization of fetal androgens which may also lead to maternal virilization and low urinary estriol levels during pregnancy. A role for the alternate 'backdoor' pathway of androgen biosynthesis, leading to dihydrotestosterone production bypassing androstenedione and testosterone, has been suggested in POR deficiency but remains unclear. POR variants may play an important role in drug metabolism, as most drugs are metabolized by hepatic microsomal P450 enzymes. However, functional assays studying the effects of specific POR mutations on steroidogenesis showed that several POR variants impaired CYP17A1, CYP21A2 and CYP19A1 activities to different degrees, indicating that each POR variant must be studied separately for each potential target P450 enzyme. Thus, the impact of POR mutations on drug metabolism by hepatic P450s requires further investigation.
Resumo:
OBJECTIVE The steroidogenic acute regulatory protein (StAR) transports cholesterol to the mitochondria for steroidogenesis. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH) which is characterized by impaired synthesis of adrenal and gonadal steroids causing adrenal insufficiency, 46,XY disorder of sex development (DSD) and failure of pubertal development. Partial loss of StAR activity may cause adrenal insufficiency only. PATIENT A newborn girl was admitted for mild dehydration, hyponatremia, hyperkalemia and hypoglycaemia and had normal external female genitalia without hyperpigmentation. Plasma cortisol, 17OH-progesterone, DHEA-S, androstendione and aldosterone were low, while ACTH and plasma renin activity were elevated, consistent with the diagnosis of primary adrenal insufficiency. Imaging showed normal adrenals, and cytogenetics revealed a 46,XX karyotype. She was treated with fluids, hydrocortisone and fludrocortisone. DESIGN, METHODS AND RESULTS Genetic studies revealed a novel homozygous STAR mutation in the 3' acceptor splice site of intron 4, c.466-1G>A (IVS4-1G>A). To test whether this mutation would affect splicing, we performed a minigene experiment with a plasmid construct containing wild-type or mutant StAR gDNA of exons-introns 4-6 in COS-1 cells. The splicing was assessed on total RNA using RT-PCR for STAR cDNAs. The mutant STAR minigene skipped exon 5 completely and changed the reading frame. Thus, it is predicted to produce an aberrant and shorter protein (p.V156GfsX19). Computational analysis revealed that this mutant protein lacks wild-type exons 5-7 which are essential for StAR-cholesterol interaction. CONCLUSIONS STAR c.466-1A skips exon 5 and causes a dramatic change in the C-terminal sequence of the protein, which is essential for StAR-cholesterol interaction. This splicing mutation is a loss-of-function mutation explaining the severe phenotype of our patient. Thus far, all reported splicing mutations of STAR cause a severe impairment of protein function and phenotype.
Resumo:
Congenital Adrenal Hyperplasia (CAH), due to 21-Hydroxylase deficiency, has an estimated incidence of 1:15,000 births and can result in death, salt-wasting crisis or impaired growth. It has been proposed that early diagnosis and treatment of infants detected from newborn screening for CAH will decrease the incidence of mortality and morbidity in the affected population. The Texas Department of Health (TDH) began mandatory screening for CAH in June, 1989 and Texas is one of fourteen states to provide neonatal screening for the disorder.^ The purpose of this study was to describe the cost and effect of screening for CAH in Texas during 1994 and to compare cases first detected by screen and first detected clinically between January 1, 1990 and December 31, 1994. This study used a longitudinal descriptive research design. The data was secondary and previously collected by the Texas Department of Health. Along with the descriptive study, an economic analysis was done. The cost of the program was defined, measured and valued for four phases of screening: specimen collection, specimen testing, follow-up and diagnostic evaluation.^ There were 103 infants with Classical CAH diagnosed during the study and 71 of the cases had the more serious Salt-Wasting form of the disease. Of the infants diagnosed with Classical CAH, 60% of the cases were first detected by screen and 40% were first detected because of clinical findings before the screening results were returned. The base case cost of adding newborn screening to an existing program (excluding the cost of specimen collection) was $357,989 for 100,000 infants. The cost per case of Classical CAH diagnosed, based on the number of infants first detected by screen in 1994, was \$126,892. There were 42 infants diagnosed with the more benign Nonclassical form of the disease. When these cases were included in the total, the cost per infant to diagnose Congenital Adrenal/Hyperplasia was $87,848. ^